|
|
Flexible ureteroscopic treatment of kidney stones: How do the new laser systems change our concepts? |
Simin Yu,Linhu Liu,Ya Li,Liang Zhou,Jixiang Chen,Hong Li,Kunjie Wang*( )
|
Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China |
|
|
Abstract Objective: Flexible ureteroscopy (fURS) has become a widely accepted and effective technique for treating kidney stones. With the development of new laser systems, the fURS approach has evolved significantly. This literature review aims to examine the current state of knowledge on fURS treatment of kidney stones, with a particular focus on the impact of the latest laser technologies on clinical outcomes and patient safety. Methods: We conducted a search of the PubMed/PMC, Web of Science Core Collection, Scopus, Embase (Ovid), and Cochrane Databases for all randomized controlled trial articles on laser lithotripsy in September 2023 without time restriction. Results: We found a total of 22 relevant pieces of literature. Holmium laser has been used for intracavitary laser lithotripsy for nearly 30 years and has become the golden standard for the treatment of urinary stones. However, the existing holmium laser cannot completely powder the stone, and the retropulsion of the stone after the laser emission and the thermal damage to the tissue have caused many problems for clinicians. The introduction of thulium fiber laser and Moses technology brings highly efficient dusting lithotripsy effect through laser innovation, limiting pulse energy and broadening pulse frequency. Conclusion: While the holmium:yttrium-aluminum-garnet laser remains the primary choice for endoscopic laser lithotripsy, recent technological advancements hint at a potential new gold standard. Parameter range, retropulsion effect, laser fiber adaptability, and overall system performance demand comprehensive attention. The ablation efficacy of high-pulse-frequency devices relies on precise targeting, which may pose practical challenges.
|
Received: 31 January 2023
Available online: 20 April 2024
|
Corresponding Authors:
* E-mail address: wangkj@scu.edu.cn (K. Wang).
|
|
|
Study | Pt, n | Laser setting | Primary outcome | Secondary outcome | Major conclusion | Ho:YAG | TFL | Moses 2.0 | Moses 1.0 | Haas et al., [47] 2023 | ? Pts diagnosed with renal stones, 108 | ? NA | ? 200 μm laser fibers: 0.3-0.8 J; 8-80 Hz | ? 200 μm laser fibers: 0.4-0.8 J; 6-20 Hz | ? NA | ? Ureteroscope time required to adequately fragment stones to 1 mm or less | ? SFR, complications, subjective surgeon measurement of laser performance, Pt related stone quality of life outcomes, and measurements of laser efficiency | ? No significant clinical advantage of TFL over the Ho:YAG with Moses 2.0 | Ulvik et al., [45] 2022 | ? Pts with renal stones ≥5 mm, 120 | ? 270 μm laser fibers: 0.4-0.8J; 6-20 Hz | ? 200 μm laser fibers: 0.4-0.8J; 6-20 Hz | ? NA | ? NA | ? SFR | ? Operative time and complications | ? Significantly more Pts with renal stones achieved stone-free status and fewer experienced intraoperative complications using TFL compared to Ho:YAG | Shrestha et al., [52] 2022 | ? Pts with renal stones <2 cm, 120 | ? 270 μm laser fibers -LP group: 0.5-1.5 J; 15-20 Hz -HP group: 0.2-1.0 J; 50-80 Hz | ? NA | ? NA | ? NA | ? Lasing duration | ? Total laser energy used, laser energy used to ablate 1 mm3 of stone, operative duration, stone ablation speed, and SFR | ? The total energy used were lower in the LP group than in the HP group with similar lasing duration, operative duration, ablation speed, and SFR for Pts | Martov et al., [53] 2021 | ? Pts with single renal stone, 174 | ? 365 μm laser fibers: 1 J; 10 Hz | ? 400 μm laser fibers: 1 J; 10 Hz | ? NA | ? NA | ? The ability to effectively treat the stone | ? Total operation and lasering time, the degree of retropulsion, and endoscopic view deterioration | ? SP TFL technology was associated with excellent efficacy and safety ratio | Karakoyunlu et al., [54] 2021 | ? Pts with renal stones (1-2 cm), 223 | ? 272 μm laser fibers: 0.8-3.0 J; 8-15 Hz | ? NA | ? NA | ? NA | ? The efficacy of different laser devices on lithotripsy | ? The effect of different laser devices and power ranges on perioperative outcomes | ? The 30 W laser device used in RIRS for 1-2 cm kidney stones had shorter operative time, higher SFRs, and lower postoperative pain scores compared with the 20 W device | Abdelbary et al., [55] 2021 | ? Pts with upper ureteric stones (<1.5 cm and ≤1000 HU), 108 | ? 272 μm laser fibers: 0.8-3.0 J; 8-15 Hz | ? NA | ? NA | ? NA | ? SFR | ? Postoperative complications | ? Ultraslow full-power SWL treatment is more safe and effective compared to laser URS | Alghamdi et al., [56] 2020 | ? Pts with a single ureteral or renal calculus, 145 | ? 275 μm laser fibers: 1.5 J; 10 Hz | ? NA | ? NA | ? NA | ? Laser efficiency overall operative time | ? Number of stone recovery and SFR | ? Efficiency of the Ho:YAG laser can be positively influenced by different pulse shapes | Lu et al., [57] 2020 | ? Pts with nephrolithiasis, 200 | ? Case group: 365 μm laser fibers: 1.5-2.2 J; 20 Hz ? Control group: 200 μm laser fibers: 0.8-1.0 J; 20 Hz | ? NA | ? NA | ? NA | ? One-step SFR (postoperative 1 day) and final SFR (postoperative 4 weeks) | ? Operation time, Hb drop and white blood cell increase | ? The fURL combined with 365 μm holmium laser is safer and highly efficacious for the management of nephrolithiasis compared to conventional fURL procedures, especially for those located in lower pole and larger than 2 cm | Ibrahim et al., [58] 2020 | ? Pts diagnosed with renal stones, 72 | ? 275 μm laser fibers: 0.4-1.0 J; 10-80 Hz | ? NA | ? NA | ? 275 μm laser fibers: 0.4-1.0 J; 10-80 Hz | ? Success rate | ? Operative complications | ? The Moses technology was associated with significantly lower fragmentation and pulverization and procedural time due to the significantly lower retropulsion of stones during laser lithotripsy | Jiang et al., [59] 2019 | ? Pts with lower calyceal stones with a diameter ≤2 cm, 116 | ? 200 μm laser fibers: 0.2-1.0 J; 3-20 Hz | ? NA | ? NA | ? NA | ? SFR | ? Mean Hb reduction and complications | ? For treating lower calyceal stones of ≤2 cm, the “All-Seeing Needle” micro-PCNL group had shorter operative time than fURS | Jin et al., [60] 2019 | ? Pts with lower-pole renal calculi (1-2 cm), 220 | ? 200 μm laser fibers: 1.0-1.2 J; 10 Hz | ? NA | ? NA | ? NA | ? Operative time | ? Intraoperative and postoperative complications | ? fURL could be a better alternative surgical method to miniaturized PCNL with similar curative effect and less blood loss and hospital stay | EL-Nahas et al., [61] 2016 | ? Pts with complete staghorn stones (branching to the three major calyces), without contraindications to PCNL, 70 | ? 500 μm laser fibers: 2 J; 20-30 Hz | ? NA | ? NA | ? NA | ? SFR | ? Complications, blood transfusion, operative time, and Hb deficit | ? Compared with Us-L for intracorporeal lithotripsy of staghorn stones during PCNL, Hp-Hll showed comparable safety and efficacy with a lower Hb deficit but longer operative time | Li et al., [62] 2015 | ? Pts with middle or distal ureteral stones, 982 | ? 0.8-1.0 J; 10 Hz | ? NA | ? NA | ? NA | ? Mean operative time | ? SFR and complications | ? Ho:YAG laser has advantages in efficacy of stone fragmentation and early SFR compared with pneumatic lithotripsy, with the increased risks of postoperative stricture | Kumar et al., [63] 2015 | ? Pts with single radiopaque upper ureteric calculus >2 cm, 110 | ? 0.6-1.2 J; 5-15Hz | ? NA | ? NA | ? NA | ? Success rate | ? Retreatment, auxiliary procedure rate, and complications | ? LU has a greater stone clearance rate, comparable operative time, lesser need for auxiliary procedure, and complication rate as compared to URS | Cimino et al., [64] 2014 | ? Pts with single and primary ureteral stones, 133 | ? 200 μm laser fibers: 0.5-1.0 J; 5-10 Hz | ? NA | ? NA | ? NA | ? Mean operative time | ? Complications | ? LL significantly influences the SFR status after ureteroscopy, allowing a higher SFR when compared to PL | Ganesamoni et al., [65] 2013 | ? Pts undergoing miniperc for renal calculi of 15 mm to 30?mm, 60 | ? 500 μm laser fibers: 0.5-1.5 J; 6-20 Hz | ? NA | ? NA | ? NA | ? Total operative time | ? Stone fragmentation time, surgeon assessed Likert scores for ease of stone fragmentation | ? LL is associated with lower stone migration and easier retrieval of the smaller fragments it produces | Razzaghi et al., [66] 2013 | ? Pts with 1-2 cm ureteral calculi, 112 | ? 0.2-1.5 J; 5-10 Hz | ? NA | ? NA | ? NA | ? Mean operation time | ? Complications, immediate and 3-month stone-free status | ? LL is a superior approach for the management of upper ureteral stones compared with pneumatic lithotripsy | Kassem et al., [67] 2012 | ? Pts with a ureteric stone size of 0.5-2 cm, 80 | ? 550 μm laser fiber: 0.6-1.2 J; 5-15 Hz | ? NA | ? NA | ? NA | ? Early SFR | ? Intraoperative complications | ? Both PL and LL are effective and safe modalities in treating large ureteric stones with minor insignificant differences | Zhang et al., [68] 2011 | ? Pts diagnosed with renal stones, 257 | ? 0.8-1.2 J; 6-10 Hz | ? NA | ? NA | ? NA | ? Efficiency quotient and cost effectiveness | ? Complications | ? Primary in situ SWL for upper and middle ureteral calculi showed lower complication rates and more cost-effective compared to ureteroscopic holmium laser lithotripsy in Eastern China | Binbay et al., [69] 2011 | ? Pts with ureteral stones, 87 | ? 550 μm laser fiber: 1.0-1.5 J; 5-12 Hz | ? NA | ? NA | ? NA | ? Operative time | ? SFR and complications | ? Ho:YAG is highly efficient with high success rates, regardless of the stone location compared with pneumatic lithotripsy | Garg et al., [70] 2009 | ? Pts with ureteral stones, 55 | ? 550 μm laser fibers: 0.2-0.8 J; 3-16 Hz | ? NA | ? NA | ? NA | ? Immediate stone clearance rate | ? Complications | ? Both laser and pneumatic energies are effective and safe for intracorporeal lithotripsy; LL takes more time but provides earlier stone-free status | Arrabal-Polo et al., [71] 2009 | ? Pts with lithiasis localized in the lumbar ureter, iliac or pelvic regions, 164 | ? 600 μm laser fibers: 1.5-2.5 J; 3-6 Hz | ? NA | ? NA | ? NA | ? Overall success rate | ? Complications | ? Endoscopic lithotripsy with the holmium laser is more effective than ESWL, but for lumbar ureteric calculi ESWL is therapeutically recommended as it is less invasive |
|
Summary of included studies.
|
|
Flowchart illustrating literature review. Ho:YAG, holmium:yttrium-aluminum-garnet; TFL, thulium fiber laser.
|
Feature | Moses 1.0 | Moses 2.0 | First description | ? 2017 | ? 2021 | Definition | ? A composed pulse mode in which the first pulse generates a vapor cavity and more effectively delivers the second pulse to the target as the energy of the electromagnetic wave is less absorbed by water | ? A new version of this high-power laser that can go up to 120 Hz | Clinical implication | ? Shorter lasting time and better laser efficacy | ? Faster ablation speed, longer operative time, and higher stone-free rate |
|
Differences between Moses 1.0 and Moses 2.0.
|
Study | Technique | Laser setting | Stone location, sizea (cm) | Lasing timea, min | Energya, kJ | SFR, % | Majdalany et al., 2021 [24] | ? Moses 1.0 | ? 0.5 J/50-80 Hz | ? Renal, 0.94 | ? 5.3 | ? 6.4 | ? 71 | ? Moses 2.0 | ? 0.5 J/50-120 Hz | ? Renal, 0.94 | ? 7 | ? 12.4 | ? 90 | Rezakahn Khajeh et al., 2021 [5] | ? Moses 2.0 | ? Debulk: 0.2-0.3 J/ 100-120 Hz | ? Renal, 1.04 | ? 6.9 | ? 12 | ? 82 | ? Dusting: 0.5 J/80 Hz (Moses distance) | ? Renal, 1.04 | ? 6.9 | ? 12 | ? 82 | Ulvik et al., 2022 [45] | ? Ho:YAG | ? 0.8 J/20 Hz ? 0.4 J/6 Hz | ? Renal, 1.5 ? Ureteric, 0.9 | ? 13 ? 13 | ? 4.2 ? 4.2 | ? 49 ? 100 | | ? TFL | ? 0.8 J/20 Hz | ? Renal, 1.3 | ? 13 | ? 3.5 | ? 86 | | | ? 0.4 J/6 Hz | ? Ureteric, 0.9 | ? 13 | ? 3.5 | ? 100 | Patil et al., 2022 [72] | ? Holmium laser and Moses mode | ? 0.3-1.2 J/ 20-80 Hz | ? Renal, 1.7 | ? 11.3 | ? 21.9 | ? 78 | | ? TFL | ? 0.1-1.0 J/ 100-250 Hz | ? Renal, 1.8 | ? 9.2 | ? 16.3 | ? 69 | Knoedler et al., 2021 [18] | ? Holmium laser and Moses mode | ? 0.3-0.8 J/ 8-80 Hz | ? Renal, 13.1 | ? 10.2 | ? 7.7 | ? 34.3 | ? Ureteric, 7.7 | ? 3.9 | ? 2.1 | ? 75 | | ? Holmium laser and regular mode | ? 0.3-0.8 J/ 8-80 Hz | ? Renal, 14.7 ? Ureteric, 6.8 | ? 8.6 ? 2.9 | ? 5.4 ? 1.5 | ? 61.9 ? 93.8 | Corrales et al., 2021 [46] | ? TFL | ? 0.3-0.6 J/ 50-180 Hz | ? Renal, NA | ? 23 | ? 18.6 | ? NA | ? 0.2-0.4 J/ 20-55 Hz | ? Ureteric, NA | ? 9.3 | ? 16.3 | ? NA | Pietropaolo et al., 2021 [73] | ? Moses 1.0 | ? 0.4-0.8 J/20-35 Hz | ? Renal and ureteric, 1.1 | ? NA | ? NA | ? 97.3 | ? Holmium laser | ? 0.4-0.8 J/12-18 Hz | ? Renal and ureteric, 1.2 | ? NA | ? NA | ? 81.6 |
|
Clinical experience with Laser technology.
|
[1] |
Dretler SP. Laser lithotripsy: a review of 20 years of research and clinical applications. Laser Surg Med 1988; 8:341e56.
pmid: 2902498
|
[2] |
Marberger M, Hofbauer J, Türk C, H?barth K, Albrecht W. Management of ureteric stones. Eur Urol 1994;25:265e72.
|
[3] |
Hofmann R, Hartung R. Laser lithotripsy of ureteral calculi. Urol Res 1990; 18(Suppl 1):S49e55. https://doi.org/10.1007/BF00301529.
doi: 10.1007/BF00301529
|
[4] |
Black KM, Aldoukhi AH, Ghani KR. A users guide to holmium laser lithotripsy settings in the modern era. Front Surg 2019; 6: 48. https://doi.org/10.3389/fsurg.2019.00048.
doi: 10.3389/fsurg.2019.00048
pmid: 31475152
|
[5] |
Rezakahn Khajeh N, Majdalany SE, Ghani KR. Moses 2.0 for high-power ureteroscopic stone dusting: clinical principles for step-by-step video technique. J Endourol 2021; 35:S22e8. https://doi.org/10.1089/end.2021.0682.
doi: 10.1089/end.2021.0682
pmid: 34910608
|
[6] |
Khusid JA, Khargi R, Seiden B, Sadiq AS, Atallah WM, Gupta M. Thulium fiber laser utilization in urological surgery: a narrative review. Investig Clin Urol 2021; 62:136e47.
doi: 10.4111/icu.20200467
pmid: 33660440
|
[7] |
Knudsen BE. Laser fibers for holmium: YAG lithotripsy: what is important and what is new. Urol Clin 2019; 46:185e91.
|
[8] |
Kronenberg P, Traxer O. In vitro fragmentation efficiency of holmium:yttrium-aluminum-garnet (YAG) laser lithotripsyda comprehensive study encompassing different frequencies, pulse energies, total power levels and laser fibre diameters. BJU Int 2014; 114:261e7.
doi: 10.1111/bju.2014.114.issue-2
|
[9] |
Aldoukhi AH, Ghani KR, Hall TL, Roberts WW. Thermal response to high-power holmium laser lithotripsy. J Endourol 2017; 31:1308e12.
doi: 10.1089/end.2017.0679
pmid: 29048216
|
[10] |
Aldoukhi AH, Black KM, Hall TL, Roberts WW, Ghani KR. Frequency threshold for ablation during holmium laser lithotripsy: how high can you go? J Endourol 2020; 34:1075e81.
doi: 10.1089/end.2020.0149
|
[11] |
Becker B, Gross AJ, Ho Netsch C. Ho:YaG laser lithotripsy: recent innovations. Curr Opin Urol 2019; 29:103e7.
doi: 10.1097/MOU.0000000000000573
|
[12] |
Ibrahim A, Badaan S, Elhilali MM, Andonian S. Moses technology in a stone simulator. Can Urol Assoc J 2017; 12:127e30.
doi: 10.5489/cuaj.4797
|
[13] |
Ventimiglia E, Traxer O. What is moses effect: a historical perspective. J Endourol 2019; 33:353e7.
doi: 10.1089/end.2019.0012
pmid: 30892062
|
[14] |
Corsini C, de Angelis M, Villa L, Somani BK, Pietropaolo A, Montorsi F, et al. Holmium:yttrium-aluminum-garnet laser with Moses: does itmake a difference? Curr Opin Urol 2022; 32:324e9.
doi: 10.1097/MOU.0000000000000979
|
[15] |
Stern KL, Monga M. The Moses holmium system-time is money. Can J Urol 2018; 25:9313e6.
|
[16] |
Trost D. Laser pulse format for penetrating an absorbing fluid. 1994. US5321715A. https://patents.google.com/patent/US5321715A/en. [Accessed 03 November 2023].
|
[17] |
Elhilali MM, Badaan S, Ibrahim A, Andonian S. Use of the Moses technology to improve holmium laser lithotripsy outcomes: a preclinical study. J Endourol 2017; 31:598e604.
doi: 10.1089/end.2017.0050
pmid: 28340540
|
[18] |
Knoedler MA, Li S, Best SL, Hedican SP, Penniston KL, Nakada SY. Clinical impact of the institution of Moses technology on efficiency during retrograde ureteroscopy for stone disease: single-center experience. J Endourol 2021; 36: 65e70.
doi: 10.1089/end.2021.0251
|
[19] |
Aldoukhi AH, Roberts WW, Hall TL, Ghani KR. Watch your distance: the role of laser fiber working distance on fragmentation when altering pulse width or modulation. J Endourol 2018; 33:120e6.
doi: 10.1089/end.2018.0572
|
[20] |
Winship B, Wollin D, Carlos E, Li J, Peters C, Simmons WN, et al. Dusting efficiency of the Moses holmium laser: an automated in vitro assessment. J Endourol 2018; 32:1131e5.
doi: 10.1089/end.2018.0660
pmid: 30328717
|
[21] |
Wollin DA, Carlos EC, Tom WR, Simmons WN, Preminger GM, Lipkin ME. Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model. J Endourol 2017; 32:59e63.
doi: 10.1089/end.2017.0658
|
[22] |
Dionise Z, Tabib C, Tran S, Soto-Palou F, Zhong P, Preminger G, et al. MP05-20 the heat is on: Moses 2.0 popcorning in a novel benchtop 3D kidney model reaches thermal damage thresholds rapidly. J Urol 2022;;207:e76. https://doi.org/10.1097/JU.0000000000002522.20.
|
[23] |
Brar H, Werneburg G, Sivalingam S. PD37-04 Moses 2.0 or masterpulse? an in vitro comparison of two novel laser systems for dusting and fragmenting in a benchtop model. J Urol 2022;207:e639. https://doi.org/10.1097/JU.0000000000002595.04.
|
[24] |
Majdalany SE, Levin BA, Ghani KR. The efficiency of Moses technology holmium laser for treating renal stones during flexible ureteroscopy: relationship between stone volume, time, and energy. J Endourol 2021; 35:S14e21. https://doi.org/10.1089/end.2021.0592.
doi: 10.1089/end.2021.0592
pmid: 34910609
|
[25] |
Nazif OA, Teichman JMH, Glickman RD, Welch AJ, Khusid JA, Khargi R, et al. Review of laser fibers: a practical guide for urologists. J Endourol 2004; 18:818e29.
doi: 10.1089/end.2004.18.818
pmid: 15659912
|
[26] |
Winship B, Terry R, Boydston K, Carlos E, Wollin D, Peters C, et al. Holmium:yttrium-aluminum-garnet laser pulse type affects irrigation temperatures in a Benchtop ureteral model. J Endourol 2019; 33:896e901.
doi: 10.1089/end.2019.0496
pmid: 31418291
|
[27] |
Khusid JA, Khargi R, Seiden B, Sadiq AS, Atallah WM, Gupta M. Thulium fiber laser utilization in urological surgery: a narrative review. Investig Clin Urol 2021; 62:136. https://doi.org/10.4111/icu.20200467.
doi: 10.4111/icu.20200467
pmid: 33660440
|
[28] |
Kronenberg P, Hameed BZ, Somani B. Outcomes of thulium fibre laser for treatment of urinary tract stones: results of a systematic review. Curr Opin Urol 2021; 31:80e6.
doi: 10.1097/MOU.0000000000000853
pmid: 33470684
|
[29] |
Scott NJ, Cilip CM, Fried NM. Thulium fiber laser ablation of urinary stones through small-core optical fibers. IEEE J Sel Top Quant Electron 2009; 15:435e40.
doi: 10.1109/JSTQE.2008.2012133
|
[30] |
Keller EX, De Coninck V, Doizi S, Daudon M, Traxer O. Thulium fiber laser: ready to dust all urinary stone composition types? World J Urol 2020; 39:1693e8.
doi: 10.1007/s00345-020-03217-9
|
[31] |
Taratkin M, Laukhtina E, Singla N, Tarasov A, Alekseeva T, Enikeev M, et al. How lasers ablate stones: in vitro study of laser lithotripsy (Ho:YAG and TM-fiber lasers) in different environments. J Endourol 2019; 35:931e6.
doi: 10.1089/end.2019.0441
|
[32] |
Fried NM, Irby PB. Advances in laser technology and fibreoptic delivery systems in lithotripsy. Nat Rev Urol 2018; 15: 563e73.
|
[33] |
Wilson CR, Hardy LA, Kennedy JD, Irby PB, Fried NM. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones. J Biomed Opt 2016; 21:018003. https://doi.org/10.1117/1.JBO.21.1.018003.
doi: 10.1117/1.JBO.21.1.018003
|
[34] |
Panthier F, Doizi S, Lapouge P, Chaussain C, Kogane N, Berthe L, et al. Comparison of the ablation rates, fissures and fragments produced with 150 mm and 272 mm laser fibers with superpulsed thulium fiber laser: an in vitro study. World J Urol 2020; 39:1683e91.
doi: 10.1007/s00345-020-03186-z
|
[35] |
Hutchens TC, Gonzalez DA, Irby PB, Fried NM. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy. J Biomed Opt 2017; 22:018001. https://doi.org/10.1117/1.JBO.22.1.018001.
doi: 10.1117/1.JBO.22.1.018001
|
[36] |
Hall LA, Gonzalez DA, Fried NM. Thulium fiber laser ablation of kidney stones using an automated, vibrating fiber. J Biomed Opt 2019; 24:038001. https://doi.org/10.1117/1.JBO.24.3.038001.
|
[37] |
Blackmon RL, Irby PB, Fried NM. Holmium:YAG (lZ2120 nm) versus thulium fiber (lZ1908 nm) laser lithotripsy. Lasers Surg Med 2010; 42:232e6.
doi: 10.1002/lsm.20893
pmid: 20333745
|
[38] |
Ventimiglia E, Doizi S, Kovalenko A, Andreeva V, Traxer O. Effect of temporal pulse shape on urinary stone phantom retropulsion rate and ablation efficiency using holmium:YAG and super-pulse thulium fibre lasers. BJU Int 2020; 126: 159e67.
doi: 10.1111/bju.15079
pmid: 32277557
|
[39] |
Blackmon RL, Irby PB, Fried NM. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects. J Biomed Opt 2011; 16: 071403. https://doi.org/10.1117/1.3564884.
doi: 10.1117/1.3564884
|
[40] |
Blackmon RL, Hutchens TC, Hardy LA, Wilson CR, Irby PB, Fried NM. Thulium fiber laser ablation of kidney stones using a 50-mm-core silica optical fiber. Opt Eng 2014; 54:011004. https://doi.org/10.1117/1.OE.54.1.011004.
doi: 10.1117/1.OE.54.1.011004
|
[41] |
Jansen ED, Asshauer T, Frenz M, Motamedi M, Delacretaz G, Welch AJ. Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation. Lasers Surg Med 1996; 18:278e93.
doi: 10.1002/(ISSN)1096-9101
|
[42] |
White MD, Moran ME, Calvano CJ, Borhan-Manesh A, Mehlhaff BA. Evaluation of retropulsion caused by holmium: YAG laser with various power settings and fibers. J Endourol 2009; 12:183e6.
doi: 10.1089/end.1998.12.183
|
[43] |
Hardy LA, Kennedy JD, Wilson CR, Irby PB, Fried NM. Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones. J Biophot 2016; 10:1240e9.
doi: 10.1002/jbio.v10.10
|
[44] |
Andreeva V, Vinarov A, Yaroslavsky I, Kovalenko A, Vybornov A, Rapoport L, et al. Preclinical comparison of superpulse thulium fiber laser and a holmium:YAG laser for lithotripsy. World J Urol 2019; 38:497e503.
doi: 10.1007/s00345-019-02785-9
|
[45] |
Ulvik ?, ?s?y MS, Julieb?-Jones P, Gjengst? P, Beisland C. Thulium fibre laser versus holmium:YAG for ureteroscopic lithotripsy: outcomes from a prospective randomised clinical trial. Eur Urol 2022;82:73e9.
|
[46] |
Corrales M, Traxer O. Initial clinical experience with the new thulium fiber laser: first 50 cases. World J Urol 2021; 39: 3945e50.
doi: 10.1007/s00345-021-03616-6
pmid: 33590280
|
[47] |
Haas CR, Knoedler MA, Li S, Gralnek DR, Best SL, Penniston KL, et al. Pulse-modulated holmium:YAG laser vs. the thulium fiber laser for renal and ureteral stones: a singlecenter prospective randomized clinical trial. J Urol 2023; 209: 374e83.
doi: 10.1097/JU.0000000000003050
|
[48] |
Enikeev D, Okhunov Z, Rapoport L, Taratkin M, Enikeev M, Snurnitsyna O, et al. Novel thulium fiber laser for enucleation of prostate: a retrospective comparison with open simple prostatectomy. J Endourol 2019; 33:16e21.
doi: 10.1089/end.2018.0791
pmid: 30489154
|
[49] |
Jones P, Hawary A, Beck R, Somani BK. Role of minipercutaneous nephrolithotomy in the management of pediatric stone disease: a systematic review of literature. J Endourol 2021; 35:728e35.
doi: 10.1089/end.2020.0743
|
[50] |
Bhanot R, Jones P, Somani B. Minimally invasive surgery for the treatment of ureteric stonesdstate-of-the-art review. Res Rep Urol 2021; 13:227e36.
|
[51] |
Enikeev D, Traxer O, Taratkin M, Okhunov Z, Shariat S. A review of thulium-fiber laser in stone lithotripsy and soft tissue surgery. Curr Opin Urol 2020; 30:853e60.
doi: 10.1097/MOU.0000000000000815
|
[52] |
Shrestha A, Corrales M, Adhikari B, Chapagain A, Traxer O. Comparison of low power and high power holmium YAG laser settings in flexible ureteroscopy. World J Urol 2022; 40: 1839e44.
doi: 10.1007/s00345-022-04040-0
pmid: 35633401
|
[53] |
Martov AG, Ergakov DV, Guseynov M, Andronov AS, Plekhanova OA. Clinical comparison of super pulse thulium fiber laser and high-power holmium laser for ureteral stone management. J Endourol 2021; 35:795e800.
doi: 10.1089/end.2020.0581
pmid: 33238763
|
[54] |
Karakoyunlu N, ?ak?c? M?, Sar? S, Hep?en E, Bikirov M, K?sa E, et al. Efficacy of various laser devices on lithotripsy in retrograde intrarenal surgery used to treat 1e 2 cm kidney stones: a prospective randomized study. Int J Clin Pract 2021;75: e14216. https://doi.org/10.1111/ijcp.14216.
|
[55] |
Abdelbary AM, Al-Dessoukey AA, Moussa AS, Elmarakbi AA, Ragheb AM, Sayed O, et al. Value of early second session shock wave lithotripsy in treatment of upper ureteric stones compared to laser ureteroscopy. World J Urol 2021; 39: 3089e93.
doi: 10.1007/s00345-020-03560-x
pmid: 33471164
|
[56] |
Alghamdi A, Kretschmer A, Stief CG, Strittmatter F. Influence of the laser pulse shape in the treatment of stones in the upper urinary tract. Investig Clin Urol 2020; 61:594. https://doi.org/10.4111/icu.20200130.
doi: 10.4111/icu.20200130
|
[57] |
Lu P, Chen K, Wang Z, Song R, Zhang J, Liu B, et al. Clinical efficacy and safety of flexible ureteroscopic lithotripsy using 365 mm holmium laser for nephrolithiasis: a prospective, randomized, controlled trial. World J Urol 2020; 38:481e7.
doi: 10.1007/s00345-019-02776-w
|
[58] |
Ibrahim A, Elhilali MM, Fahmy N, Carrier S, Andonian S. Double- blinded prospective randomized clinical trial comparing regular and Moses modes of holmium laser lithotripsy. J Endourol 2020; 34:624e8.
doi: 10.1089/end.2019.0695
pmid: 32143552
|
[59] |
Jiang K, Chen H, Yu X, Chen Z, Ye Z, Yuan H. The “all-seeing needle” micro-PCNL versus flexible ureterorenoscopy for lower calyceal stones of ≤2 cm. Urolithiasis 2019;47:201e6.
|
[60] |
Jin L, Yang B, Zhou Z, Li N. Comparative efficacy on flexible ureteroscopy lithotripsy and miniaturized percutaneous nephrolithotomy for the treatment of medium-sized lowerpole renal calculi. J Endourol 2019; 33:914e9.
doi: 10.1089/end.2019.0504
|
[61] |
EL-Nahas AR, Elshal AM, EL-Tabey NA, EL-Assmy AM, Shokeir AA. Percutaneous nephrolithotomy for staghorn stones: a randomised trial comparing high-power holmium laser versus ultrasonic lithotripsy. BJU Int 2016; 118:307e12.
doi: 10.1111/bju.13418
pmid: 26779990
|
[62] |
Li L, Pan Y, Weng Z, Bao W, Yu Z, Wang F. A Prospective randomized trial comparing pneumatic lithotripsy and holmium laser for management of middle and distal ureteral calculi. J Endourol 2015; 29:883e7.
doi: 10.1089/end.2014.0856
pmid: 25578351
|
[63] |
Kumar A, Vasudeva P, Nanda B, Kumar N, Jha SK, Singh H. A prospective randomized comparison between laparoscopic ureterolithotomy and semirigid ureteroscopy for upper ureteral stones >2 cm: a single-center experience. J Endourol 2015;29:1248e52.
|
[64] |
Cimino S, Favilla V, Russo GI, Saita A, Sortino G, Castelli T, et al. Pneumatic lithotripsy versus holmium: YAG laser lithotripsy for the treatment of single ureteral stones: a prospective, single-blinded study. Urol Int 2014; 92:468e72.
doi: 10.1159/000355828
|
[65] |
Ganesamoni R, Sabnis RB, Mishra S, Parekh N, Ganpule A, Vyas JB, et al. Prospective randomized controlled trial comparing laser lithotripsy with pneumatic lithotripsy in miniperc for renal calculi. J Endourol 2013; 27:1444e9.
doi: 10.1089/end.2013.0177
pmid: 24251428
|
[66] |
Razzaghi MR, Razi A, Mazloomfard MM, Golmohammadi Taklimi A, Valipour R, Razzaghi Z. Safety and efficacy of pneumatic lithotripters versus holmium laser in management of ureteral calculi: a randomized clinical trial. Urol J 2013; 10: 762e6.
pmid: 23504679
|
[67] |
Kassem A, ElFayoumy H, ElSaied W, ElGammal M, Bedair A. Laser and pneumatic lithotripsy in the endoscopic management of large ureteric stones: a comparative study. Urol Int 2012; 88:311e5.
doi: 10.1159/000336254
pmid: 22441150
|
[68] |
Zhang J, Shi Q, Wang G, Wang F, Jiang N. Cost-effectiveness analysis of ureteroscopic laser lithotripsy and shock wave lithotripsy in the management of ureteral calculi in Eastern China. Urol Int 2011; 86:470e5.
doi: 10.1159/000324479
pmid: 21597268
|
[69] |
Binbay M, Tepeler A, Singh A, Akman T, Tekinaslan E, Sarilar O, et al. Evaluation of pneumatic versus holmium:YAG laser lithotripsy for impacted ureteral stones. Int Urol Nephrol 2011; 43:989e95.
doi: 10.1007/s11255-011-9951-8
pmid: 21479563
|
[70] |
Garg S, Mandal AK, Singh SK, Naveen A, Ravimohan M, Aggarwal M, et al. Ureteroscopic laser lithotripsy versus ballistic lithotripsy for treatment of ureteric stones: a prospective comparative study. Urol Int 2009; 82:341e5.
doi: 10.1159/000209369
pmid: 19440025
|
[71] |
Arrabal-Polo MA, Arrabal-Martín M, Miján-Ortiz JL, Valle-Díaz F, López-León V, Merino-Salas S, et al. Treatment of ureteric lithiasis with retrograde ureteroscopy and holmium: YAG laser lithotripsy vs. extracorporeal lithotripsy. BJU Int 2009;104:1144e7.
|
[72] |
Patil A, Reddy N, Shah D, Singh A, Ganpule A, Sabnis R, et al. High-power holmium with Moses technology or thulium fiber laser in miniPerc with suction: a new curiosity. J Endourol 2022; 36:1348e54.
doi: 10.1089/end.2021.0915
|
[73] |
Pietropaolo A, Hughes T, Mani M, Somani B. Outcomes of ureteroscopy and laser stone fragmentation (URSL) for kidney stone disease (KSD): comparative cohort study using Moses technology 60 W laser system versus regular holmium 20 W laser. JCM 2021; 10:2742. https://doi.org/10.3390/jcm10132742.
|
[1] |
Victoria Jahrreiss, Christian Seitz, Fahad Quhal. Medical management of urolithiasis: Great efforts and limited progress[J]. Asian Journal of Urology, 2024, 11(2): 149-155. |
[2] |
Kyo Chul Koo,Abdulghafour Halawani,Victor K.F. Wong,Dirk Lange,Ben H. Chew. Monogenic features of urolithiasis: A comprehensive review[J]. Asian Journal of Urology, 2024, 11(2): 169-179. |
[3] |
Andreia Cardoso,Aparício Coutinho,Gonçalo Neto,Sara Anacleto,Catarina Laranjo Tinoco,Nuno Morais,Mário Cerqueira-Alves,Estevão Lima,Paulo Mota. Percutaneous nephrostomy versus ureteral stent in hydronephrosis secondary to obstructive urolithiasis: A systematic review and meta-analysis[J]. Asian Journal of Urology, 2024, 11(2): 261-270. |
[4] |
Ryan A. Dornbier,Chirag P. Doshi,Shalin C. Desai,Petar Bajic,Michelle Van Kuiken,Mark Khemmani,Ahmer V. Farooq,Larissa Bresler,Thomas M.T. Turk,Alan J. Wolfe,Kristin G. Baldea. Metabolic syndrome and the urinary microbiome of patients undergoing percutaneous nephrolithotomy[J]. Asian Journal of Urology, 2024, 11(2): 316-323. |
[5] |
Oktay Özman, Hacı M. Akgül, Cem Başataç, Önder Çınar, Eyüp B. Sancak, Cenk M. Yazıcı, Bülent Önal, Haluk Akpınar, on behalf of the RIRSearch Study Group . Multi-aspect analysis of ureteral access sheath usage in retrograde intrarenal surgery: A RIRSearch group study[J]. Asian Journal of Urology, 2024, 11(1): 80-85. |
[6] |
Anastasios Anastasiadis,Antonios Koudonas,Georgios Langas,Stavros Tsiakaras,Dimitrios Memmos,Ioannis Mykoniatis,Evangelos N. Symeonidis,Dimitrios Tsiptsios,Eliophotos Savvides,Ioannis Vakalopoulos,Georgios Dimitriadis,Jean de la Rosette. Transforming urinary stone disease management by artificial intelligence-based methods: A comprehensive review[J]. Asian Journal of Urology, 2023, 10(3): 258-274. |
[7] |
John Denstedt,Fernanda C. Gabrigna Berto. Thulium fiber laser lithotripsy: Is it living up to the hype?[J]. Asian Journal of Urology, 2023, 10(3): 289-297. |
[8] |
Denis V. Krakhotkin,Volodymyr A. Chernylovskyi,Kemal Sarica,Arman Tsaturyan,Evangelos Liatsikos,Jurijus Makevicius,Nikolay Yu Iglovikov,Dmitry N. Pikhovkin. Diagnostic value ultrasound signs of stones less than or equal to 10 mm and clinico-radiological variants of ureteric colic[J]. Asian Journal of Urology, 2023, 10(1): 39-49. |
[9] |
. Reliability of nephrolithometric nomograms in patients treated with minimally invasive percutaneous nephrolithotomy: A precision study[J]. Asian Journal of Urology, 2023, 10(1): 70-80. |
[10] |
Jiefeng Xiao,Shukai Zheng,Zhaolong Qiu,Kusheng Wu. Associations between IL-1RN variable number of tandem repeat, IL-1β (-511) and IL-1β (+3954) gene polymorphisms and urolithiasis in Uighur children of China[J]. Asian Journal of Urology, 2022, 9(1): 51-56. |
[11] |
Dilip K. Mishra,Sonia Bhatt,Sundaram Palaniappan,Talamanchi V.K. Reddy,Vinothkumar Rajenthiran,Y.L. Sreeranga,Madhu S. Agrawal. Mini versus ultra-mini percutaneous nephrolithotomy in a paediatric population[J]. Asian Journal of Urology, 2022, 9(1): 75-80. |
[12] |
Russell S. Terry,Glenn M. Preminger. Metabolic evaluation and medical management of staghorn calculi[J]. Asian Journal of Urology, 2020, 7(2): 122-129. |
[13] |
Osman Ermis,Bhaskar Somani,Thomas Reeves,Selcuk Guven,Pilar Laguna Pes,Arun Chawla,Padmaraj Hegde,Jean de la Rosette. Definition, treatment and outcome of residual fragments in staghorn stones[J]. Asian Journal of Urology, 2020, 7(2): 116-121. |
[14] |
Nariman Gadzhiev,Vigen Malkhasyan,Gagik Akopyan,Sergei Petrov,Francis Jefferson,Zhamshid Okhunov. Percutaneous nephrolithotomy for staghorn calculi: Troubleshooting and managing complications[J]. Asian Journal of Urology, 2020, 7(2): 139-148. |
[15] |
Bohdan Baralo,Patrick Samson,David Hoenig,Arthur Smith. Percutaneous kidney stone surgery and radiation exposure: A review[J]. Asian Journal of Urology, 2020, 7(1): 10-17. |
|
|
|
|