|
|
Thulium fiber laser lithotripsy: Is it living up to the hype? |
John Denstedt( ),Fernanda C. Gabrigna Berto
|
Division of Urology, Department of Surgery, Western University, Schulich School of Medicine and Dentistry, London Canada |
|
|
Abstract ObjectiveThe holmium:yttrium-aluminium-garnet laser (Ho:YAG) has been the gold standard for laser lithotripsy over the last three decades. After demonstrating good in vitro efficacy, the thulium fiber laser (TFL) has been recently released in the market and the initial clinical results are encouraging. This article aims to review the main technology differences between the Ho:YAG laser and the TFL, discuss the initial clinical results with the TFL as well as the optimal settings for TFL lithotripsy. MethodsWe reviewed the literature focusing on the technological aspects of the Ho:YAG laser and TFL as well as the results of in vitro and in vivo studies comparing both technologies. ResultsIn vitro studies show a technical superiority of TFL compared to the Ho:YAG laser and encouraging results have been demonstrated in clinical practice. However, as TFL is a new technology, limited studies are currently available, and the optimal settings for lithotripsy are not yet established. ConclusionTFL has the potential to be an alternative to the Ho:YAG laser, but more reports are still needed to determine the optimal laser for lithotripsy of urinary tract stones when considering all parameters including effectiveness, safety, and costs.
|
Received: 20 October 2022
Available online:
|
Corresponding Authors:
John Denstedt
E-mail: john.denstedt@sjhc.london.on.ca
|
|
|
Characteristics | Thulium fiber laser | High-power Ho:YAG laser | Light source | Laser diodes | Flash lamp | Wavelength, nm | 1940 | 2120 | Water penetration depth, mm | 0.077 | 0.314 | Pulse energy range, J | 0.025-6.0 | 0.2-6.0 | Maximum frequency, Hz | 2400 | 80 | Maximum average power, W | 50 | 120 | Pulse width | Short and long pulse | Short and long pulse | Beam profile | Similar to Gaussian curve | Faster spike and slower descendant | Cooling system | Air | Water | Power outlet | Regular power outlet | Dedicated high voltage |
|
Comparison between Ho:YAG laser and thulium fiber laser characteristics.
|
Characteristic | Thulium fiber laser | High-power Ho:YAG laser | Machine size and weight | Smaller and lighter | Bigger and heavier | Particle size | Smaller dust and fragments | Dust and fragments | Fiber size | Minimum 50 μm | Minimum 200 μm | Retropulsion and burnback | Less burnback and retropulsion | More burnback and retropulsion | Ablation speed | Faster | Slower | Energy efficiency | Higher efficiency | Lower efficiency |
|
Perceived advantages of the thulium fiber laser compared to the Ho:YAG lasers based on findings of the initial in vitro studies.
|
Procedure | Thulium fiber laser | Ho:YAG laser | PCNL | ·? Kronenberg et al., 2021 [60]; ·Fragmentation: 1.5 J and 15-30 Hz, ·Dusting: 0.1-0.3 J and 50-100 Hz ·? Shah et al., 2021 [68]; ·Stones <1000 HU: 0.2 J and 125-150 Hz, ·Stones 1000-1400 HU: 0.2 J and 150-200 Hz, ·Stones >1400 HU: 0.2 J and 200 Hz | ·? Tzelves et al., 2021 [11]; ·Fragmentation: 0.8-1.4 J and 6-10 Hz | RIRS and ureteroscopy | ·? Enikeev et al., 2021 [52]; ·Fragmentation: 0.5 J and 30 Hz, ·Dusting: 0.15 J and 100 Hz ·? Kronenberg et al., 2021 [60]; ·Renal stones: 0.1-0.2 J with 15-30 W, ·Ureteric calculi: 0.1-0.2 J with 10-15 W ·? Sierra et al., 2022 [73]; ·Fragmentation: 0.1-1.5 J and 5-60 Hz (7.5-60 W), ·Dusting: 0.05-0.5 J and 20-400 Hz (7.5-45 W) | ·? Tzelves et al., 2021 [11]; ·Dusting: 0.2-0.5 J and 10-70 Hz, ·Pop corning: 1.0-1.5 J and 15-40 Hz | Cystolitholapaxy | ·? Kronenberg et al., 2021 [60]; ·2-5 J and 5-10 Hz | ·? Tzelves et al., 2021 [11]; ·0.8-1.4 J and 6-10 Hz |
|
Comparison between Ho:YAG laser and thulium fiber laser recommended pre-settings.
|
[1] |
Watson GM, Wickham JE. Initial experience with a pulsed dye laser for ureteric calculi. Lancet 1986; 1:1357-8.
pmid: 2872474
|
[2] |
Denstedt JD, Razvi HA, Sales JL, Eberwein PM. Preliminary experience with holmium:YAG laser lithotripsy. J Endourol 1995; 9:255-8.
pmid: 7550269
|
[3] |
Shroff S, Watson GM, Parikh A, Thomas R, Soonawalla PF, Pope A. The holmium:YAG laser for ureteric stones. Br J Urol 1996; 78:836-9.
pmid: 9014705
|
[4] |
Blackmon RL, Case JR, Trammell SR, Irby PB, Fried NM. Fiberoptic manipulation of urinary stone phantoms using holmium: YAG and thulium fiber lasers. J Biomed Opt 2013; 18:28001. https://doi.org/10.1117/1.JBO.18.2.028001.
doi: 10.1117/1.JBO.18.2.028001
pmid: 23377013
|
[5] |
Blackmon RL, Irby PB, Fried NM. Holmium:YAG (lambdaZ2120nm) versus thulium fiber (lambdaZ1908 nm) laser lithotripsy. Laser Surg Med 2010;42:232-6.
|
[6] |
Blackmon RL, Irby PB, Fried NM. Thulium fiber laser lithotripsy using tapered fibers. Laser Surg Med 2010; 42:45-50.
doi: 10.1002/lsm.20883
|
[7] |
Hardy LA, Wilson CR, Irby PB, Fried NM. Thulium fiber laser lithotripsy in an in vitro ureter model. J Biomed Opt 2014; 19: 128001. https://doi.org/10.1117/1.JBO.19.12.128001.
doi: 10.1117/1.JBO.19.12.128001
|
[8] |
Fried NM. Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt thulium fiber laser at 1.94 microm. Laser Surg Med 2005;37:53-8.
|
[9] |
Keller EX, De Coninck V, Doizi S, Daudon M, Traxer O. Thulium fiber laser: ready to dust all urinary stone composition types? World J Urol 2021; 39:1693-8.
doi: 10.1007/s00345-020-03217-9
|
[10] |
Martov AG, Ergakov DV, Guseinov MA, Andronov AS, Dutov SV, Vinnichenko VA, et al. [Initial experience in clinical application of thulium laser contact lithotripsy for transurethral treatment of urolithiasis]. Urologiia 2018;112-20. [Article in Russian].
|
[11] |
Tzelves L, Somani B, Berdempes M, Markopoulos T, Skolarikos A. Basic and advanced technological evolution of laser lithotripsy over the past decade: an educational review by the European Society of Urotechnology Section of the European Association of Urology. Turkish J Urol 2021; 47:183-92.
|
[12] |
Teichmann HO, Herrmann TR, Bach T. Technical aspects of lasers in urology. World J Urol 2007; 25:221-5.
doi: 10.1007/s00345-007-0184-5
|
[13] |
Traxer O, Keller EX. Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium:YAG laser. World J Urol 2020; 38:1883-94.
doi: 10.1007/s00345-019-02654-5
pmid: 30729311
|
[14] |
Kronenberg P, Traxer O. The laser of the future: reality and expectations about the new thulium fiber laserda systematic review. Transl Androl Urol 2019; 8:S398-417. https://doi.org/10.21037/tau.2019.08.01.
doi: 10.21037/tau.2019.08.01
|
[15] |
Taratkin M, Azilgareeva C, Cacciamani GE, Enikeev D. Thulium fiber laser in urology: physics made simple. Curr Opin Urol 2022; 32:166-72.
doi: 10.1097/MOU.0000000000000967
|
[16] |
Liu M, Peng Y, Wang Z, Li L, Ming S, Fang Z, et al. Ablation efficiency of a novel thulium fiber laser: an in vitro study on laser setting and fiber usage. J Endourol 2021; 35:1211-6.
doi: 10.1089/end.2020.1116
|
[17] |
Andreeva V, Vinarov A, Yaroslavsky I, Kovalenko A, Vybornov A, Rapoport L, et al. Preclinical comparison of superpulse thulium fiber laser and a holmium:YAG laser for lithotripsy. World J Urol 2020; 38:497-503.
doi: 10.1007/s00345-019-02785-9
pmid: 31055626
|
[18] |
Aalami Harandi A, Small A. Thulium lasers blast into the world of endourology. AUA News; 2022. https://www.auanet.org/membership/publications-overview/auanews/all-articles/2022/june-2022/thulium-lasers-blast-into-the-world-ofendourology. [Accessed September 1, 2022].
|
[19] |
Gao B, Bobrowski A, Lee J. A scoping review of the clinical efficacy and safety of the novel thulium fiber laser: the rising star of laser lithotripsy. Can Urol Assoc J 2021; 15:56-66.
|
[20] |
Martov AG, Ergakov DV, Guseynov M, Andronov AS, Plekhanova OA. Clinical comparison of super pulse thulium fiber laser and high-power holmium laser for ureteral stone management. J Endourol 2021; 35:795-800.
doi: 10.1089/end.2020.0581
pmid: 33238763
|
[21] |
Ventimiglia E, Doizi S, Kovalenko A, Andreeva V, Traxer O. Effect of temporal pulse shape on urinary stone phantom retropulsion rate and ablation efficiency using holmium:YAG and super-pulse thulium fibre lasers. BJU Int 2020; 126:159-67.
doi: 10.1111/bju.15079
pmid: 32277557
|
[22] |
Ventimiglia E, Traxer O. What is moses effect: a historical perspective. J Endourol 2019; 33:353-7.
doi: 10.1089/end.2019.0012
pmid: 30892062
|
[23] |
Elhilali MM, Badaan S, Ibrahim A, Andonian S. Use of the Moses technology to improve holmium laser lithotripsy outcomes: a preclinical study. J Endourol 2017; 31:598-604.
doi: 10.1089/end.2017.0050
pmid: 28340540
|
[24] |
Keller EX, de Coninck V, Audouin M, Doizi S, Bazin D, Daudon M, et al. Fragments and dust after holmium laser lithotripsy with or without “Moses technology”: how are they different? J Biophot 2019; 12:e201800227. https://doi.org/10.1002/jbio.201800227.
|
[25] |
Winship B, Wollin D, Carlos E, Li J, Peters C, Simmons WN, et al. Dusting efficiency of the Moses holmium laser: an automated in vitro assessment. J Endourol 2018; 32:1131-5.
doi: 10.1089/end.2018.0660
pmid: 30328717
|
[26] |
Sánchez-Puy A, Bravo-Balado A, Diana P, Baboudjian M, Piana A, Girón I, et al. New generation pulse modulation in holmium:YAG lasers: a systematic review of the literature and meta-analysis. J Clin Med 2022;11: 3208. https://doi.org/10.3390/jcm11113208.
|
[27] |
Mullerad M, Aguinaga JRA, Aro T, Kastin A, Goldin O, Kravtsov A, et al. Initial clinical experience with a modulated holmium laser pulse-Moses technology: does it enhance laser lithotripsy efficacy? Rambam Maimonides Med J 2017; 8:e0038. https://doi.org/10.5041/RMMJ.10315.
doi: 10.5041/RMMJ.20769172
|
[28] |
Ibrahim A, Elhilali MM, Fahmy N, Carrier S, Andonian S. Double-blinded prospective randomized clinical trial comparing regular and moses modes of holmium laser lithotripsy. J Endourol 2020; 34:624-8.
doi: 10.1089/end.2019.0695
pmid: 32143552
|
[29] |
Pietropaolo A, Hughes T, Mani M, Somani B. Outcomes of ureteroscopy and laser stone fragmentation (URSL) for kidney stone disease (KSD): comparative cohort study using Moses technology 60 W laser system versus regular holmium 20 W laser. J Clin Medicine 2021;10:2742. https://doi.org/10.3390/jcm10132742.
|
[30] |
Knoedler MA, Li S, Best SL, Hedican SP, Penniston KL, Nakada SY. Clinical impact of the institution of Moses technology on efficiency during retrograde ureteroscopy for stone disease: single-center experience. J Endourol 2022; 36: 65-70.
doi: 10.1089/end.2021.0251
|
[31] |
Hardy LA, Vinnichenko V, Fried NM. High power holmium:YAG versus thulium fiber laser treatment of kidney stones in dusting mode: ablation rate and fragment size studies. Laser Surg Med 2019; 51:522-30.
doi: 10.1002/lsm.23057
|
[32] |
Panthier F, Doizi S, Lapouge P, Chaussain C, Kogane N, Berthe L, et al. Comparison of the ablation rates, fissures and fragments produced with 150 mm and 272 mm laser fibers with SuperPulsed thulium fiber laser: an in vitro study. World J Urol 2021;39:1683-91.
|
[33] |
Panthier F, Doizi S, Gorny C, Berthe L, Traxer O. Impact of laser fiber diameter and irrigation fluids on induced bubble stream dynamics with thulium fiber laser: an in vitro study. J Endourol 2021; 35:1883-90.
doi: 10.1089/end.2020.0766
|
[34] |
Taratkin M, Azilgareeva C, Corrales M, Teoh JYC, Allenov S, Inoyatov J, et al. Superpulse thulium fiber laser lithotripsy: an in vitro comparison of 200 mm and 150 mm laser fibers. World J Urol 2021;39:4459-64.
|
[35] |
Germain T, Berthe L, Panthier F, Gorny C, Traxer O, Doizi S. Assessment of factors involved in laser fiber degradation with thulium fiber laser. J Endourol 2022; 36:668-73.
doi: 10.1089/end.2021.0387
|
[36] |
Mues AC, Teichman JMH, Knudsen BE. Quantification of holmium: yttrium aluminum garnet optical tip degradation. J Endourol 2009; 23:1425-8.
doi: 10.1089/end.2009.0384
|
[37] |
Kronenberg P, Traxer O. Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers. World J Urol 2015; 33:463-9.
doi: 10.1007/s00345-014-1395-1
pmid: 25185524
|
[38] |
Hutchens TC, Gonzalez DA, Irby PB, Fried NM. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy. J Biomed Opt 2017; 22:18001. https://doi.org/10.1117/1.JBO.22.1.018001.
doi: 10.1117/1.JBO.22.1.018001
pmid: 28301635
|
[39] |
Kronenberg P, Traxer O. Are we all doing it wrong? Influence of stripping and cleaving methods of laser fibers on laser lithotripsy performance. J Urol 2015; 193:1030-5.
doi: 10.1016/j.juro.2014.07.110
pmid: 25102206
|
[40] |
Uzan A, Chiron P, Panthier F, Haddad M, Berthe L, Traxer O, et al. Comparison of holmium:YAG and thulium fiber lasers on the risk of laser fiber fracture. J Clin Medicine 2021; 10:2960. https://doi.org/10.3390/jcm10132960.
doi: 10.3390/jcm10132960
|
[41] |
Wilson CR, Hardy LA, Irby PB, Fried NM. Collateral damage to the ureter and nitinol stone baskets during thulium fiber laser lithotripsy. Laser Surg Med 2015; 47:403-10.
doi: 10.1002/lsm.22348
|
[42] |
Belle JD, Chen R, Srikureja N, Amasyali AS, Keheila M, Baldwin DD. Does the novel thulium fiber laser have a higher risk of urothelial thermal injury than the conventional holmium laser in an in vitro study? J Endourol 2022; 36:1249-54.
doi: 10.1089/end.2021.0842
pmid: 35302382
|
[43] |
Molina WR, Carrera RV, Chew BH, Knudsen BE. Temperature rise during ureteral laser lithotripsy: comparison of super pulse thulium fiber laser (SPTF) vs. high power 120 W Holmium-YAG laser (Ho:YAG). World J Urol 2021; 39:3951-6.
|
[44] |
Taratkin M, Laukhtina E, Singla N, Kozlov V, Abdusalamov A, Ali S, et al. Temperature changes during laser lithotripsy with Ho:YAG laser and novel Tm-fiber laser: a comparative in-vitro study. World J Urol 2020; 38:3261-6.
doi: 10.1007/s00345-020-03122-1
|
[45] |
Okhunov Z, Jiang P, Afyouni AS, Ayad M, Arada R, Brevik A, et al. Caveat emptor: the heat is “on” dan in vivo evaluation of the thulium fiber laser and temperature changes in the porcine kidney during dusting and fragmentation modes. J Endourol 2021; 35:1716-22.
doi: 10.1089/end.2021.0206
|
[46] |
Petzold R, Suarez-Ibarrola R, Miernik A. Temperature assessment of a novel pulsed thulium solid-state laser compared with a holmium:yttrium-aluminum-garnet laser. J Endourol 2021; 35:853-9.
doi: 10.1089/end.2020.0803
pmid: 33191783
|
[47] |
Peng Y, Liu M, Ming S, Yu W, Li L, Lu C, et al. Safety of a novel thulium fiber laser for lithotripsy: an in vitro study on the thermal effect and its impact factor. J Endourol 2020; 34:88-92.
doi: 10.1089/end.2019.0426
|
[48] |
Sierra del Rio A, Corrales M, Kolvatzis M, Panthier F, Pin?ero A, Traxer O. Thermal injury and laser efficiency with holmium: YAG and thulium fiber laser. An in vitro study. J Endourol 2022; 36:1599-606.
doi: 10.1089/end.2022.0216
pmid: 35793107
|
[49] |
Enikeev D, Taratkin M, Klimov R, Inoyatov J, Azilgareeva C, Ali S, et al. SuperPulsed thulium fiber laser for stone dusting: in search of a perfect ablation regimenda prospective singlecenter study. J Endourol 2020; 34:1175-9.
doi: 10.1089/end.2020.0519
|
[50] |
Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004; 240:205-13.
doi: 10.1097/01.sla.0000133083.54934.ae
pmid: 15273542
|
[51] |
Taratkin M, Azilgareeva C, Korolev D, Barghouthy Y, Tsarichenko D, Akopyan G, et al. Prospective single-center study of SuperPulsed thulium fiber laser in retrograde intrarenal surgery: initial clinical data. Urol Int 2022; 106:404-10.
doi: 10.1159/000516933
|
[52] |
Enikeev D, Grigoryan V, Fokin I, Morozov A, Taratkin M, Klimov R, et al. Endoscopic lithotripsy with a SuperPulsed thulium-fiber laser for ureteral stones: a single-center experience. Int J Urol 2021; 28:261-5.
doi: 10.1111/iju.14443
pmid: 33258271
|
[53] |
Carrera RV, Randall JH, Garcia-Gil M, Knudsen BE, Chew BH, Thompson JA, et al. Ureteroscopic performance of high power super pulse thulium fiber laser for the treatment of urolithiasis: results of the first case series in North America. Urology 2021; 153:87-92.
doi: 10.1016/j.urology.2020.12.054
pmid: 33621583
|
[54] |
Ulvik ?, ?s?y MS, Julieb?-Jones P, Gjengst? P, Beisland C. Thulium fibre laser versus Holmium:YAG for ureteroscopic lithotripsy: outcomes from a prospective randomised clinical trial. Eur Urol 2022;82:73-9.
|
[55] |
Corrales M, Traxer O. Initial clinical experience with the new thulium fiber laser: first 50 cases. World J Urol 2021; 39: 3945-50.
doi: 10.1007/s00345-021-03616-6
pmid: 33590280
|
[56] |
Ryan JR, Nguyen MH, Linscott JA, Nowicki SW, James E, Jumper BM, et al. Ureteroscopy with thulium fiber laser lithotripsy results in shorter operating times and large cost savings. World J Urol 2022; 40:2077-82.
doi: 10.1007/s00345-022-04037-9
|
[57] |
Chua ME, Bobrowski A, Ahmad I, Kim JK, Silangcruz JM, Rickard M, et al. Thulium fiber laser versus Holmium:YAG laser lithotripsy for urolithiasis: meta-analysis of clinical studies. BJU Int 2023; 131:383-94.
doi: 10.1111/bju.v131.4
|
[58] |
Corrales M, Traxer O. Retrograde intrarenal surgery: laser showdown (Ho:YAG vs. thulium fiber laser). Curr Opin Urol 2022; 32:179-84.
doi: 10.1097/MOU.0000000000000971
pmid: 35013078
|
[59] |
Traxer O, Corrales M. Managing urolithiasis with thulium fiber laser: updated real-life resultsda systematic review. J Clin Medicine 2021; 10:3390. https://doi.org/10.3390/jcm10153390.
doi: 10.3390/jcm10153390
|
[60] |
Kronenberg P, Hameed BZ, Somani B. Outcomes of thulium fibre laser for treatment of urinary tract stones: results of a systematic review. Curr Opin Urol 2021; 31:80-6.
doi: 10.1097/MOU.0000000000000853
pmid: 33470684
|
[61] |
Assimos D, Krambeck A, Miller NL, Monga M, Murad MH, Nelson CP, et al. Surgical management of stones: American Urological Association/Endourological Society guideline, Part I. J Urol 2016; 196:1153-60.
doi: 10.1016/j.juro.2016.05.090
pmid: 27238616
|
[62] |
Assimos D, Krambeck A, Miller NL, Monga M, Murad MH, Nelson CP, et al. Surgical management of stones: American Urological Association/Endourological Society guideline, Part II. J Urol 2016; 196:1161-9.
doi: 10.1016/j.juro.2016.05.091
pmid: 27238615
|
[63] |
Türk C, Neisius A, Petrik A, Seitz C, Skolarikos A, Thomas K. EAU guidelines on urolithiasis. Eur Urol 2016; 69: 475-82.
doi: 10.1016/j.eururo.2015.07.041
|
[64] |
Zhu W, Liu Y, Liu L, Lei M, Yuan J, Wan SP, et al. Minimally invasive versus standard percutaneous nephrolithotomy: a meta-analysis. Urolithiasis 2015; 43:563-70.
doi: 10.1007/s00240-015-0808-y
pmid: 26242465
|
[65] |
Enikeev D, Taratkin M, Klimov R, Alyaev Y, Rapoport L, Gazimiev M, et al. Thulium-fiber laser for lithotripsy: first clinical experience in percutaneous nephrolithotomy. World J Urol 2020; 38:3069-74.
doi: 10.1007/s00345-020-03134-x
|
[66] |
Taratkin M, Azilgareeva C, Chinenov D, Mikhailov V, Inoyatov J, Ali S, et al. Retrograde intrarenal surgery versus percutaneous nephrolithotomy in larger kidney stones. Could SuperPulsed thulium-fiber laser change the game? Cent Eur J Urol 2021; 74:229-34.
|
[67] |
Korolev D, Akopyan G, Tsarichenko D, Shpikina A, Ali S, Chinenov D, et al. Minimally invasive percutaneous nephrolithotomy with SuperPulsed thulium-fiber laser. Urolithiasis 2021; 49:485-91.
doi: 10.1007/s00240-021-01258-2
pmid: 33655346
|
[68] |
Shah D, Patil A, Reddy N, Singh A, Ganpule A, Sabnis R, et al. A clinical experience of thulium fibre laser in miniperc to dust with suction: a new horizon. World J Urol 2021; 39:2727-32.
doi: 10.1007/s00345-020-03458-8
pmid: 32960327
|
[69] |
Mahajan AD, Mahajan SA. Thulium fiber laser versus holmium: yttrium aluminum garnet laser for stone lithotripsy during mini-percutaneous nephrolithotomy: a prospective randomized trial. Indian J Urol 2022; 38:42-7.
doi: 10.4103/iju.iju_331_21
|
[70] |
Traxer O, Martov A, Ergakov DV, Guseynov M. V10eProspective transurethral lithotripsy study with SuperPulseTM fiber laser. Eur Urol Suppl 2019; 18:e2222. https://doi.org/10.1016/S1569-9056(19)31607-0.
|
[71] |
Traxer O, Rapoport L, Tsarichenko D, Dymov A, Enikeev D, Sorokin N, et al. V03-02 First clinical study on SuperPulse thulium fiber laser for lithotripsy. J Urol 2018;199. e321-2. https://doi.org/10.1016/j.juro.2018.02.827.
|
[72] |
Dymov A, Rapoport L, Tsarichenko D, Enikeev D, Sorokin N, Akopyan G, et al. Pd01-06 Prospective clinical study on superpulse thulium fiber laser: initial analysis of optimal laser settings. J Urol 2019; 201:e58. https://doi.org/10.1097/01.ju.0000555018.13063.41.
|
[73] |
Sierra A, Corrales M, Pi?ero A, Traxer O. Thulium fiber laser pre-settings during ureterorenoscopy: Twitter’s experts’ recommendations. World J Urol 2022; 40:1529-35.
doi: 10.1007/s00345-022-03966-9
pmid: 35246704
|
[74] |
Jones P, Beisland C, Ulvik ?. Current status of thulium fibre laser lithotripsy: an up-to-date review. BJU Int 2021; 128: 531-8.
doi: 10.1111/bju.v128.5
|
[1] |
Anastasios Anastasiadis,Antonios Koudonas,Georgios Langas,Stavros Tsiakaras,Dimitrios Memmos,Ioannis Mykoniatis,Evangelos N. Symeonidis,Dimitrios Tsiptsios,Eliophotos Savvides,Ioannis Vakalopoulos,Georgios Dimitriadis,Jean de la Rosette. Transforming urinary stone disease management by artificial intelligence-based methods: A comprehensive review[J]. Asian Journal of Urology, 2023, 10(3): 258-274. |
[2] |
Denis V. Krakhotkin,Volodymyr A. Chernylovskyi,Kemal Sarica,Arman Tsaturyan,Evangelos Liatsikos,Jurijus Makevicius,Nikolay Yu Iglovikov,Dmitry N. Pikhovkin. Diagnostic value ultrasound signs of stones less than or equal to 10 mm and clinico-radiological variants of ureteric colic[J]. Asian Journal of Urology, 2023, 10(1): 39-49. |
[3] |
. Reliability of nephrolithometric nomograms in patients treated with minimally invasive percutaneous nephrolithotomy: A precision study[J]. Asian Journal of Urology, 2023, 10(1): 70-80. |
[4] |
Jiefeng Xiao,Shukai Zheng,Zhaolong Qiu,Kusheng Wu. Associations between IL-1RN variable number of tandem repeat, IL-1β (-511) and IL-1β (+3954) gene polymorphisms and urolithiasis in Uighur children of China[J]. Asian Journal of Urology, 2022, 9(1): 51-56. |
[5] |
Dilip K. Mishra,Sonia Bhatt,Sundaram Palaniappan,Talamanchi V.K. Reddy,Vinothkumar Rajenthiran,Y.L. Sreeranga,Madhu S. Agrawal. Mini versus ultra-mini percutaneous nephrolithotomy in a paediatric population[J]. Asian Journal of Urology, 2022, 9(1): 75-80. |
[6] |
Russell S. Terry,Glenn M. Preminger. Metabolic evaluation and medical management of staghorn calculi[J]. Asian Journal of Urology, 2020, 7(2): 122-129. |
[7] |
Osman Ermis,Bhaskar Somani,Thomas Reeves,Selcuk Guven,Pilar Laguna Pes,Arun Chawla,Padmaraj Hegde,Jean de la Rosette. Definition, treatment and outcome of residual fragments in staghorn stones[J]. Asian Journal of Urology, 2020, 7(2): 116-121. |
[8] |
Nariman Gadzhiev,Vigen Malkhasyan,Gagik Akopyan,Sergei Petrov,Francis Jefferson,Zhamshid Okhunov. Percutaneous nephrolithotomy for staghorn calculi: Troubleshooting and managing complications[J]. Asian Journal of Urology, 2020, 7(2): 139-148. |
[9] |
Bohdan Baralo,Patrick Samson,David Hoenig,Arthur Smith. Percutaneous kidney stone surgery and radiation exposure: A review[J]. Asian Journal of Urology, 2020, 7(1): 10-17. |
[10] |
Liu Yu,Chen Yuntian,Liao Banghua,Luo Deyi,Wang Kunjie,Li Hong,Zeng Guohua. Epidemiology of urolithiasis in Asia[J]. Asian Journal of Urology, 2018, 5(4): 205-214. |
[11] |
Carter Boyd,Kyle Wood,Dustin Whitaker,Dean G. Assimos. The influence of metabolic syndrome and its components on the development of nephrolithiasis[J]. Asian Journal of Urology, 2018, 5(4): 215-222. |
[12] |
Jennifer Bjazevic,Hassan Razvi*. Stones in pregnancy and pediatrics[J]. Asian Journal of Urology, 2018, 5(4): 223-234. |
[13] |
Matthias Beysens,Thomas O. Tailly. Ureteral stents in urolithiasis[J]. Asian Journal of Urology, 2018, 5(4): 274-286. |
[14] |
Daniel A. Wollin,Adam G. Kaplan,Glenn M. Preminger,Pietro Manuel Ferraro,Antonio Nouvenne,Andrea Tasca,Emanuele Croppi,Giovanni Gambaro,Ita P. Heilberg. Defining metabolic activity of nephrolithiasis - Appropriate evaluation and follow-up of stone formers[J]. Asian Journal of Urology, 2018, 5(4): 235-242. |
[15] |
Luke F. Reynolds,Tad Kroczak,Kenneth T. Pace. Indications and contraindications for shock wave lithotripsy and how to improve outcomes[J]. Asian Journal of Urology, 2018, 5(4): 256-263. |
|
|
|
|