|
|
Cell-free DNA in the management of prostate cancer: Current status and future prospective |
Wei Hea,Yutian Xiaob,Shi Yanb,c,Yasheng Zhub,d,*( ),Shancheng Rend,*( )
|
a College of Basic Medical Sciences, Naval Medical University, Shanghai, China b Department of Urology, The First Affiliated Hospital, Naval Medical University, Shanghai, China c Department of Urology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China d Department of Urology, The Second Affiliated Hospital, Naval Medical University, Shanghai, China |
|
|
Abstract Objective With the escalating prevalence of prostate cancer (PCa) in China, there is an urgent demand for novel diagnostic and therapeutic approaches. Extensive investigations have been conducted on the clinical implementation of circulating free DNA (cfDNA) in PCa. This review aims to provide a comprehensive overview of the present state of cfDNA as a biomarker for PCa and to examine its merits and obstacles for future clinical utilization. Methods Relevant peer-reviewed manuscripts on cfDNA as a PCa marker were evaluated by PubMed search (2010-2022) to evaluate the roles of cfDNA in PCa diagnosis, prognosis, and prediction, respectively. Resultsc fDNA is primarily released from cells undergoing necrosis and apoptosis, allowing for non-invasive insight into the genomic, transcriptomic, and epigenomic alterations within various PCa disease states. Next-generation sequencing, among other detection methods, enables the assessment of cfDNA abundance, mutation status, fragment characteristics, and epigenetic modifications. Multidimensional analysis based on cfDNA can facilitate early detection of PCa, risk stratification, and treatment monitoring. However, standardization of cfDNA detection methods is still required to expedite its clinical application. Conclusionc fDNA provides a non-invasive, rapid, and repeatable means of acquiring multidimensional information from PCa patients, which can aid in guiding clinical decisions and enhancing patient management. Overcoming the application barriers of cfDNA necessitates increased data sharing and international collaboration.
|
Received: 03 August 2022
Available online:
|
Corresponding Authors:
Yasheng Zhu,Shancheng Ren
E-mail: zys0562@foxmail.com;renshancheng@gmail.com
|
|
|
|
An overview of the molecular information derived from cfDNA and its clinical applications. cfDNA is originated from apoptotic or necrotic cells. Neutrophils can also release extracellular traps as part of a controlled cell-death process. Alive cells are also able to release cfDNA actively. cfDNA shedding into blood stream, urine, or other body fluids can be used to measure its abundance, mutation status, epigenetic changes, and altered fragmentation pattern. cfDNA could be potentially applied in several clinical aspects, including screening, early detection, prognostic assessment, risk prediction of recurrence and metastasis. Future clinical applications also include monitoring treatment response, identifying mechanism of resistance and minimal residual identification. cfDNA, circulating cell-free DNA. This figure was created with BioRender.com (BioRender, Toronto, Canada).
|
|
Proposed pipelines of cfDNA in the clinical management of prostate cancer. PSA test identified suspicious population from general population. Further cfDNA test discovered high-risk population. Biopsy-confirmed prostate cancer patients further underwent individualized risk assessment and treatment method selection. For active surveillance patients, cfDNA severed as real-time monitoring and helped to decide to continue active surveillance or be transferred to other therapies. cfDNA could warn early recurrence and cfDNA-guided precision medicine could identify key molecular alterations to guide clinical decision-making and long-term follow-up. cfDNA, circulating cell-free DNA; PSA, prostate-specific antigen. This figure was created with BioRender.com (BioRender, Toronto, Canada).
|
|
Clinical applications of cfDNA in the management of advanced or recurrent or progressed prostate cancer. Molecular alterations derived from urine or blood cfDNA have high concordance with tissue biopsy and can overcome tumor heterogeneity limited by multi-tumor or metastasis foci. Specific genetic variations defined different molecular subtypes. For example, prostate cancer with loss of functions alterations in DNA damage repair pathways unveiled by cfDNA analysis often suggests more aggressive clinical and pathological characteristics. These patients were more suitable to be treated with PARP inhibitors while they were more likely to be resistant to anti-androgen therapy. cfDNA, circulating cell-free DNA; ICI, immune checkpoint inhibitor; OS, overall survival; AR, androgen receptor; AR V7(+), androgen receptor splice variant 7 (positive); CDK12, cyclin dependent kinase 12; PARP, poly adenosine diphosphate ribose polymerase; BRCA2, breast cancer susceptibility genes 2; ATM, ataxia telangiectasia-mutated gene. This figure was created with BioRender.com (BioRender, Toronto, Canada).
|
Reference | Cohort (n) | Resource | Results | Method | Hennigan et al., 2019 [58] | ·- Localized PCa (112) | ·Plasma | - Low abundance of cfDNA in localized PCa | ULP WGS | Chen et al., 2021 [85] | ·- HD (34) | ·Plasma (7-55 mL) | - cfDNA fragment size may be an alternative that can differentiate PCa patients from HD | Quantitative real-time PCR | ·- Localized PCa (112) | ·- mCRPC (122) | Salvi et al., 2015 [96] | ·- PCa (67) | ·Urine (30 mL) | - UCF-DNA integrity showed lower accuracy than PSA for early PCa diagnosis | Quantitative real-time PCR | ·- Benign diseases of the urogenital tract (64) | Constancio et al., 2019 [73] | ·- Lung cancer (102) | ·Plasma | - Methylation analysis of FOXA1, RARβ2, RASSF1A, GSTP1, and SOX17 facilitated early detection of PCa | WGBS | ·- PCa (121) | ·- Colorectal cancer (100) | ·- HD (136) | Bryzgunova et al., 2021 [74] | ·- PCa (20) | ·Plasma (2 mL) | - GSTP1 and RNF219 gene methylation analysis differentiated PCa patients from HD | Locus-specific NGS | ·- HD (18) | ·- BPH (17) | Tomeva et al., 2022 [75] | ·- PCa (27) | ·Plasma | - Androgen receptor mutation p.H875Y associated with cfDNA methylation and circulating miRNAs to distinguish PCa patients from HD | Quantitative real-time PCR | ·- HD (15) | Cario et al., 2020 [90] | ·- PCa (550) | ·Public data from the ICGC | - Optimizing cfDNA mutation detection performance based on machine learning | Using machine learning to optimize targeted sequencing panels | Brikun et al., 2019 [93] | ·- Patients with elevated PSA (94) | ·Urine | - Methylation of HOXD3, HOXA7, GPR62, and KLK10 were candidates for early detection markers of PCa | Semi-quantitative PCR | Chen et al., 2021 [91] | ·- Localized PCa (21) | ·Plasma | - Targeted cfDNA sequencing identifies mutations in FOXA1, PTEN, MED12, and ATM to detect localized PCa | Targeted and low-pass WGS | ·- HD (15) | ·- mCRPC (9) |
|
cfDNA in PCa screening and detection.
|
Reference | Cohort (n) | Resource | Results | Method | Kubota et al., 2021 [101] | ·- HD (47) | Plasma (1 mL) | ·- High cfDNA and AR-amp-high were significantly associated with poor OS in CRPC | Quantitative real-time PCR | ·- Localized PCa with ADT (57) | ·- CSPC with ADT (97) | ·- CRPC (97) | Kohli et al., 2020 [103] | ·- Independent patients (4; untreated mHSPC and mCRPC) | Plasma | ·- TP53 mutation, RB1 loss, and AR gene amplification were associated with poor OS in mCRPC | NGS | Lau et al., 2020 [128] | ·- Localized PCa | Plasma | ·- ctDNA TP53 mutations were associated with significantly shorter metastasis-free survival | WGS and TAm-Seq | ·(prospectively; 8) | ·- PCa | ·(retrospective; 189) | Bjerre et al., 2020 [50] | ·- HD (36) | Plasma | ·- Methylated ctDNA (DOCK2/HAPLN3/FBXO30) was associated with a significantly shorter time to progression or metastasis | MS-ddPCR | ·- BPH (61) | ·- Localized PCa (102) | ·- Metastatic PCa (65) | Del Re et al., 2021 [137] | ·- mCRPC (84; 40 abiraterone, 44 enzalutamide) | Plasma (10 mL) | ·- AR gain in cfDNA predicted resistance to AR signaling inhibitors | ddPCR | Hussain et al., 2020 [146] | ·- Olaparib (256 patients) | Plasma | ·- At least one alteration in BRCA1, BRCA2, or ATM responded better to olaparib | NGS-based FoundationOne CDx (Foundation Medicine, USA) | ·- Enzalutamide or abiraterone plus prednisone (131 patients) | Reimers et al., 2020 [155] | ·- Advanced PCa (317; 172 tumor tissue, 145 ctDNA) | Tissue and plasma | ·- Patients with CDK12 mutant PCa exhibited a shorter time to metastasis | NGS | Sumanasuriya et al., 2021 [159] | ·- mCRPC (188) | Plasma | ·- Longitudinal changes in ctDNA fraction enabled monitoring of drug response | lpWGS | Beltran et al., 2020 [49] | ·- Metastatic PCa (10) | Plasma | ·- Combination of genomic (TP53, RB1, CYLD, and AR) and epigenomic alterations applied to ctDNA identifies patients with CRPC-NE | WES and WGBS | ·- CRPC (35) | ·- CRPC-NE (17) |
|
cfDNA in PCa risk stratification and monitoring.
|
No. | ClinicalTrials.gov NCT number | Condition | Purpose | Status | Phase | 1 | NCT04015622 | mCRPC | - PCa treatment optimization via analysis of ctDNA | Recruiting | Phase 2 | 2 | NCT04601441 | mCSPC | - Evaluate changes in genomic alterations for 73 PCa driver genes during apalutamide treatment | Recruiting | Phase 4 | 3 | NCT03228810 | Metastatic PCa | - Detect and calculate ctDNA in relation to metastasis-directed radiation and ADT | Completed | NA | 4 | NCT05116579 | mCRPC | - Evaluate the application value of customized ctDNA monitoring in efficacy assessment and prediction during PARPi treatment | Recruiting | NA | 5 | NCT03903835 | mCRPC | - Prolong progression-free survival by measuring ctDNA in plasma and adapting the treatment accordingly | Recruiting | Phase 3 | 6 | NCT02771769 | Men with elevated PSA levels | - Determine whether copy number instability scores derived from the cfDNA correlates with PSA screening levels and prostate biopsy results | Terminated | NA | 7 | NCT04081428 | Localized PCa | - Using breath, cfDNA, and image analysis to predict normal tissue and tumor response during PCa SBRT | Recruiting | NA | 8 | NCT03385655 | mCRPC | - cfDNA helped predict which patients are most likely to be helped by the drugs | Recruiting | Phase 2 | 9 | NCT04580667 | Untreated PCa | - Develop a new test of cfDNA to identify PCa patients at the highest risk of radiotherapy-related complications, especially those related to GI toxicities | Recruiting | NA | 10 | NCT05245435 | Primary oligometastatic PCa | - Study the diagnostic and prognostic accuracy and health economics considerations of cfDNA | Recruiting | NA |
|
Selective clinical trials of cfDNA or ctDNA in PCa.
|
[1] |
Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol 2020; 77:38-52.
doi: S0302-2838(19)30619-0
pmid: 31493960
|
[2] |
Nyame YA, Gore JL. What goes up must come down: identifying truth from global prostate cancer epidemiology. Eur Urol 2020; 77:53-4.
doi: S0302-2838(19)30738-9
pmid: 31627967
|
[3] |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin 2018;68:394-424.
|
[4] |
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics. CA Cancer J Clin 2022; 72:7-33. 2022.
doi: 10.3322/caac.v72.1
|
[5] |
Zheng R, Zhang S, Zeng H, Wang S, Sun K, Chen R, et al. Cancer incidence and mortality in China, 2016. J Natl Cancer Cent 2022; 2:1-9.
|
[6] |
Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J 2022; 135:584-90.
doi: 10.1097/CM9.0000000000002108
|
[7] |
Matuszczak M, Schalken JA, Salagierski M. Prostate cancer liquid biopsy biomarkers' clinical utility in diagnosis and prognosis. Cancers 2021; 13:3373. https://doi.org/10.3390/cancers13133373.
doi: 10.3390/cancers13133373
|
[8] |
Cucchiara V, Cooperberg MR, Dall'Era M, Lin DW, Montorsi F, Schalken JA, et al. Genomic markers in prostate cancer decision making. Eur Urol 2018; 73:572-82.
doi: S0302-2838(17)30975-2
pmid: 29129398
|
[9] |
Barranha R, Costa JL, Carneiro F, Machado JC. Genetic heterogeneity in colorectal cancer and its clinical implications. Acta Med Port 2015; 28:370-5.
doi: 10.20344/amp.5398
|
[10] |
Allott EH, Geradts J, Sun X, Cohen SM, Zirpoli GR, Khoury T, et al. Intratumoral heterogeneity as a source of discordance in breast cancer biomarker classification. Breast Cancer Res 2016; 18:68. https://doi.org/10.1186/s13058-016-0725-1.
doi: 10.1186/s13058-016-0725-1
pmid: 27349894
|
[11] |
Cimadamore A, Aurilio G, Nole F, Massari F, Scarpelli M, Santoni M, et al. Update on circulating tumor cells in genitourinary tumors with focus on prostate cancer. Cells 2020; 9: 1495. https://doi.org/10.3390/cells9061495.
doi: 10.3390/cells9061495
|
[12] |
Mollica V, Di Nunno V, Santoni M, Cimadamore A, Scarpelli M, Lopez-Beltran A, et al. An evaluation of current prostate cancer diagnostic approaches with emphasis on liquid biopsies and prostate cancer. Expert Rev Mol Diagn 2020; 20:207-17.
doi: 10.1080/14737159.2019.1684265
pmid: 31640441
|
[13] |
Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinicdimplementation issues and future challenges. Nat Rev Clin Oncol 2021; 18:297-312.
doi: 10.1038/s41571-020-00457-x
pmid: 33473219
|
[14] |
Liang W, Zhao Y, Huang W, Gao Y, Xu W, Tao J, et al. Noninvasive diagnosis of early-stage lung cancer using highthroughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics 2019;9:2056-70.
|
[15] |
Ye Q, Ling S, Zheng S, Xu X. Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Mol Cancer 2019; 18:114. https://doi.org/10.1186/s12943-019-1043-x.
doi: 10.1186/s12943-019-1043-x
pmid: 31269959
|
[16] |
Moss J, Zick A, Grinshpun A, Carmon E, Maoz M, Ochana BL, et al. Circulating breast-derived DNA allows universal detection and monitoring of localized breast cancer. Ann Oncol 2020; 31:395-403.
doi: S0923-7534(19)41720-1
pmid: 32067681
|
[17] |
Huang J, Soupir AC, Schlick BD, Teng M, Sahin IH, Permuth JB, et al. Cancer detection and classification by CpG island hypermethylation signatures in plasma cell-free DNA. Cancers 2021; 13:5611. https://doi.org/10.3390/cancers13225611.
|
[18] |
Parikh AR, Van Seventer EE, Siravegna G, Hartwig AV, Jaimovich A, He Y, et al. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer. Clin Cancer Res 2021; 27: 5586-94.
doi: 10.1158/1078-0432.CCR-21-0410
|
[19] |
Wang Y, Wang Z, Gang X, Wang G. Liquid biopsy in prostate cancer: current status and future challenges of clinical application. Aging Male 2021; 24:58-71.
doi: 10.1080/13685538.2021.1944085
pmid: 34850655
|
[20] |
Mandel P, Metais P. [Nuclear acids in human blood plasma]. C R Seances Soc Biol Fil 1948; 142:241-3. [Article in French].
|
[21] |
Han DSC, Lo YMD. The nexus of cfDNA and nuclease biology. Trends Genet 2021; 37:758-70.
doi: 10.1016/j.tig.2021.04.005
pmid: 34006390
|
[22] |
Grabuschnig S, Bronkhorst AJ, Holdenrieder S, Rosales Rodriguez I, Schliep KP, Schwendenwein D, et al. Putative origins of cell-free DNA in humans: a review of active and passive nucleic acid release mechanisms. Int J Mol Sci 2020; 21:8062. https://doi.org/10.3390/ijms21218062.
doi: 10.3390/ijms21218062
|
[23] |
Wong FC, Sun K, Jiang P, Cheng YK, Chan KC, Leung TY, et al. Cell-free DNA in maternal plasma and serum: a comparison of quantity, quality and tissue origin using genomic and epigenomic approaches. Clin Biochem 2016; 49:1379-86.
doi: S0009-9120(16)30255-7
pmid: 27620950
|
[24] |
Moss J, Magenheim J, Neiman D, Zemmour H, Loyfer N, Korach A, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun 2018; 9:5068. https://doi.org/10.1038/s41467-018-07466-6.
doi: 10.1038/s41467-018-07466-6
pmid: 30498206
|
[25] |
Li W, Liu JB, Hou LK, Yu F, Zhang J, Wu W, et al. Liquid biopsy in lung cancer: significance in diagnostics, prediction, and treatment monitoring. Mol Cancer 2022; 21:25. https://doi.org/10.1186/s12943-022-01505-z.
doi: 10.1186/s12943-022-01505-z
pmid: 35057806
|
[26] |
Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med 2018; 10: eaat4921. https://doi.org/10.1126/scitranslmed.aat4921.
doi: 10.1126/scitranslmed.aat4921
|
[27] |
Heitzer E, Speicher MR. One size does not fit all: size-based plasma DNA diagnostics. Sci Transl Med 2018; 10:eaav3873. https://doi.org/10.1126/scitranslmed.aav3873.
doi: 10.1126/scitranslmed.aav3873
|
[28] |
Korabecna M, Zinkova A, Brynychova I, Chylikova B, Prikryl P, Sedova L, et al. Cell-free DNA in plasma as an essential immune system regulator. Sci Rep 2020; 10:17478. https://doi.org/10.1038/s41598-020-74288-2.
doi: 10.1038/s41598-020-74288-2
pmid: 33060738
|
[29] |
Ingelsson B, Soderberg D, Strid T, Soderberg A, Bergh AC, Loitto V, et al. Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C. Proc Natl Acad Sci U S A 2018; 115: E478-87. https://doi.org/10.1073/pnas.1711950115.
|
[30] |
Takahashi A, Okada R, Nagao K, Kawamata Y, Hanyu A, Yoshimoto S, et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun 2017; 8: 15287. https://doi.org/10.1038/ncomms15287.
doi: 10.1038/ncomms15287
pmid: 28508895
|
[31] |
Trejo-Becerril C, Perez-Cardenas E, Taja-Chayeb L, Anker P, Herrera-Goepfert R, Medina-Velazquez LA, et al. Cancer progression mediated by horizontal gene transfer in an in vivo model. PLoS One 2012; 7:e52754. https://doi.org/10.1371/journal.pone.0052754.
doi: 10.1371/journal.pone.0052754
|
[32] |
Furi I, Kalmar A, Wichmann B, Spisak S, Scholler A, Bartak B, et al. Cell free DNA of tumor origin induces a 'metastatic' expression profile in HT-29 cancer cell line. PLoS One 2015; 10:e0131699. https://doi.org/10.1371/journal.pone.013-1699.
doi: 10.1371/journal.pone.0131699
|
[33] |
Demers M, Wong SL, Martinod K, Gallant M, Cabral JE, Wang Y, et al. Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology 2016; 5:e1134073. https://doi.org/10.1080/2162402X.2015.1134073.
doi: 10.1080/2162402X.2015.1134073
|
[34] |
Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther 2019; 20: 1057-67.
|
[35] |
Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977; 37:646-50.
pmid: 837366
|
[36] |
Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 2016; 35:347-76.
doi: 10.1007/s10555-016-9629-x
|
[37] |
Chen S, Yang M, Zhong N, Yu D, Jian J, Jiang D, et al. Quantified CIN score from cell-free DNA as a novel noninvasive predictor of survival in patients with spinal metastasis. Front Cell Dev Biol 2021; 9:767340. https://doi.org/10.3389/fcell.2021.767340.
doi: 10.3389/fcell.2021.767340
|
[38] |
Riaz IB, Wang L, Kohli M. Liquid biopsy approach in the management of prostate cancer. Transl Res 2018; 201:60-70.
doi: S1931-5244(18)30087-2
pmid: 29936077
|
[39] |
Onidani K, Shoji H, Kakizaki T, Yoshimoto S, Okaya S, Miura N, et al. Monitoring of cancer patients via next-generation sequencing of patient-derived circulating tumor cells and tumor DNA. Cancer Sci 2019; 110:2590-9.
|
[40] |
Chatfield-Reed K, Roche VP, Pan Q. cfDNA detection for HPVt squamous cell carcinomas. Oral Oncol 2021; 115:104958. https://doi.org/10.1016/j.oraloncology.2020.104958.
doi: 10.1016/j.oraloncology.2020.104958
|
[41] |
Li Y, Zheng Y, Wu L, Li J, Ji J, Yu Q, et al. Current status of ctDNA in precision oncology for hepatocellular carcinoma. J Exp Clin Cancer Res 2021; 40:140. https://doi.org/10.1186/s13046-021-01940-8.
doi: 10.1186/s13046-021-01940-8
|
[42] |
Keppens C, Dequeker EMC, Patton SJ, Normanno N, Fenizia F, Butler R, et al. International pilot external quality assessment scheme for analysis and reporting of circulating tumour DNA. BMC Cancer 2018; 18:804. https://doi.org/10.1186/s12885-018-4694-x.
|
[43] |
Deveson IW, Gong B, Lai K, LoCoco JS, Richmond TA, Schageman J, et al. Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology. Nat Biotechnol 2021; 39:1115-28.
doi: 10.1038/s41587-021-00857-z
pmid: 33846644
|
[44] |
Mizuno K, Sumiyoshi T, Okegawa T, Terada N, Ishitoya S, Miyazaki Y, et al. Clinical impact of detecting low-frequency variants in cell-free DNA on treatment of castration-resistant prostate cancer. Clin Cancer Res 2021; 27:6164-73.
doi: 10.1158/1078-0432.CCR-21-2328
pmid: 34526361
|
[45] |
Ding YH, Li YF. [Progress of clonal hematopoiesis of indeterminate potential]. Zhonghua Xue Ye Xue Za Zhi 2016; 37: 542-4. [Article in Chinese].
|
[46] |
Bick AG, Weinstock JS, Nandakumar SK, Fulco CP, Bao EL, Zekavat SM, et al. Inherited causes of clonal haematopoiesis in 97 691 whole genomes. Nature 2020; 586:763-8.
doi: 10.1038/s41586-020-2819-2
|
[47] |
Jensen K, Konnick EQ, Schweizer MT, Sokolova AO, Grivas P, Cheng HH, et al. Association of clonal hematopoiesis in DNA repair genes with prostate cancer plasma cell-free DNA testing interference. JAMA Oncol 2021; 7:107-10.
doi: 10.1001/jamaoncol.2020.5161
pmid: 33151258
|
[48] |
Pascual J, Attard G, Bidard FC, Curigliano G, De Mattos-Arruda L, Diehn M, et al. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group. Ann Oncol 2022; 33:750-68.
|
[49] |
Beltran H, Romanel A, Conteduca V, Casiraghi N, Sigouros M, Franceschini GM, et al. Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer. J Clin Invest 2020; 130:1653-68.
doi: 10.1172/JCI131041
pmid: 32091413
|
[50] |
Bjerre MT, Norgaard M, Larsen OH, Jensen SO, Strand SH, Ostergren P, et al. Epigenetic analysis of circulating tumor DNA in localized and metastatic prostate cancer: evaluation of clinical biomarker potential. Cells 2020; 9:1362. https://doi.org/10.3390/cells9061362.
doi: 10.3390/cells9061362
|
[51] |
Berchuck JE, Baca SC, McClure HM, Korthauer K, Tsai HK, Nuzzo PV, et al. Detecting neuroendocrine prostate cancer through tissue-informed cell-free DNA methylation analysis. Clin Cancer Res 2022; 28:928-38.
doi: 10.1158/1078-0432.CCR-21-3762
|
[52] |
Dillinger T, Sheibani-Tezerji R, Pulverer W, Stelzer I, Hassler MR, Scheibelreiter J, et al. Identification of tumor tissue-derived DNA methylation biomarkers for the detection and therapy response evaluation of metastatic castration resistant prostate cancer in liquid biopsies. Mol Cancer 2022; 21:7. https://doi.org/10.1186/s12943-021-01445-0.
doi: 10.1186/s12943-021-01445-0
pmid: 34980142
|
[53] |
Liu MC, Oxnard GR, Klein EA, Swanton C, Seiden MV, Consortium C. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol 2020; 31:745-59.
|
[54] |
Huang J, Soupir AC, Wang L. Cell-free DNA methylome profiling by MBD-seq with ultra-low input. Epigenetics 2022; 17:239-52.
doi: 10.1080/15592294.2021.1896984
|
[55] |
Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, Chadwick D, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 2018; 563:579-83.
doi: 10.1038/s41586-018-0703-0
|
[56] |
Nassiri F, Chakravarthy A, Feng S, Shen SY, Nejad R, Zuccato JA, et al. Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes. Nat Med 2020; 26:1044-7.
doi: 10.1038/s41591-020-0932-2
pmid: 32572265
|
[57] |
Angeles AK, Janke F, Bauer S, Christopoulos P, Riediger AL, Sultmann H. Liquid biopsies beyond mutation calling: genomic and epigenomic features of cell-free DNA in cancer. Cancers 2021; 13:5615. https://doi.org/10.3390/cancers13225615.
doi: 10.3390/cancers13225615
|
[58] |
Hennigan ST, Trostel SY, Terrigino NT, Voznesensky OS, Schaefer RJ, Whitlock NC, et al. Low abundance of circulating tumor DNA in localized prostate cancer. JCO Precis Oncol 2019; 3:PO.19.00176. https://doi.org/10.1200/PO.19.00176.
|
[59] |
Allen D, Butt A, Cahill D, Wheeler M, Popert R, Swaminathan R. Role of cell-free plasma DNA as a diagnostic marker for prostate cancer. Ann N Y Acad Sci 2004; 1022: 76-80.
doi: 10.1196/annals.1318.013
|
[60] |
Wroclawski ML, Serpa-Neto A, Fonseca FL, Castro-Neves-Neto O, Pompeo AS, Machado MT, et al. Cell-free plasma DNA as biochemical biomarker for the diagnosis and followup of prostate cancer patients. Tumour Biol 2013; 34: 2921-7.
doi: 10.1007/s13277-013-0854-4
|
[61] |
Casanova-Salas I, Athie A, Boutros PC, Del Re M, Miyamoto DT, Pienta KJ, et al. Quantitative and qualitative analysis of blood-based liquid biopsies to inform clinical decision-making in prostate cancer. Eur Urol 2021; 79: 762-71.
doi: 10.1016/j.eururo.2020.12.037
pmid: 33422353
|
[62] |
Sita-Lumsden A, Fletcher CE, Dart DA, Brooke GN, Waxman J, Bevan CL. Circulating nucleic acids as biomarkers of prostate cancer. Biomarkers Med 2013; 7:867-77.
doi: 10.2217/bmm.13.104
|
[63] |
Oxnard GR, Klein EA, Seiden MV, Hubbell E, Venn O, Jamshidi A, et al. Simultaneous multi-cancer detection and tissue of origin (TOO) localization using targeted bisulfite sequencing of plasma cell-free DNA (cfDNA). Ann Oncol 2019; 30(Suppl 5):v912. https://doi.org/10.1093/annonc/mdz394.074.
|
[64] |
Chen X, Gole J, Gore A, He Q, Lu M, Min J, et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat Commun 2020; 11:3475. https://doi.org/10.1038/s41467-020-17316-z.
doi: 10.1038/s41467-020-17316-z
pmid: 32694610
|
[65] |
Liu MC, Klein E, Hubbell E, Maddala T, Aravanis AM, Beausang JF, et al. Plasma cell-free DNA (cfDNA) assays for early multi-cancer detection: the circulating cell-free genome atlas (CCGA) study. Ann Oncol 2018; 29(Suppl 8): viii14. https://doi.org/10.1093/annonc/mdy269.048.
|
[66] |
Nadauld LD, McDonnell CH 3rd, Beer TM, Liu MC, Klein EA, Hudnut A, et al. The PATHFINDER study: assessment of the implementation of an investigational multi-cancer early detection test into clinical practice. Cancers 2021; 13:3501. https://doi.org/10.3390/cancers13143501.
doi: 10.3390/cancers13143501
|
[67] |
Sweet TJ, Ting AH. Women in cancer thematic review: diverse functions of DNA methylation: implications for prostate cancer and beyond. Endocr Relat Cancer 2016; 23: T169-78. https://doi.org/10.1530/ERC-16-0306.
doi: 10.1530/ERC-16-0306
|
[68] |
Zane L, Sharma V, Misteli T. Common features of chromatin in aging and cancer: cause or coincidence? Trends Cell Biol 2014; 24:686-94.
doi: 10.1016/j.tcb.2014.07.001
pmid: 25103681
|
[69] |
Kulis M, Esteller M. DNA methylation and cancer. Adv Genet 2010; 70:27-56.
|
[70] |
Silva R, Moran B, Russell NM, Fahey C, Vlajnic T, Manecksha RP, et al. Evaluating liquid biopsies for methylomic profiling of prostate cancer. Epigenetics 2020; 15:715-27.
doi: 10.1080/15592294.2020.1712876
pmid: 32000564
|
[71] |
Ellinger J, Haan K, Heukamp LC, Kahl P, Buttner R, Muller SC, et al. CpG island hypermethylation in cell-free serum DNA identifies patients with localized prostate cancer. Prostate 2008; 68:42-9.
pmid: 18004747
|
[72] |
Wu T, Giovannucci E, Welge J, Mallick P, Tang WY, Ho SM. Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: a meta-analysis. Br J Cancer 2011; 105:65-73.
doi: 10.1038/bjc.2011.143
|
[73] |
Constancio V, Nunes SP, Moreira-Barbosa C, Freitas R, Oliveira J, Pousa I, et al. Early detection of the major male cancer types in blood-based liquid biopsies using a DNA methylation panel. Clin Epigenetics 2019; 11:175. https://doi.org/10.1186/s13148-019-0779-x.
doi: 10.1186/s13148-019-0779-x
pmid: 31791387
|
[74] |
Bryzgunova O, Bondar A, Ruzankin P, Laktionov P, Tarasenko A, Kurilshikov A, et al. Locus-specific methylation of GSTP1, RNF219, and KIAA1539 genes with single molecule resolution in cell-free DNA from healthy donors and prostate tumor patients: application in diagnostics. Cancers 2021;13: 6234. https://doi.org/10.3390/cancers13246234.
|
[75] |
Tomeva E, Switzeny OJ, Heitzinger C, Hippe B, Haslberger AG. Comprehensive approach to distinguish patients with solid tumors from healthy controls by combining androgen receptor mutation p.H875Y with cell-free DNA methylation and circulating miRNAs. Cancers 2022; 14:462. https://doi.org/10.3390/cancers14020462.
doi: 10.3390/cancers14020462
|
[76] |
Lo YMD, Han DSC, Jiang P, Chiu RWK. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science 2021; 372:eaaw3616. https://doi.org/10.1126/science.aaw3616.
doi: 10.1126/science.aaw3616
|
[77] |
Sanchez C, Roch B, Mazard T, Blache P, Dache ZAA, Pastor B, et al. Circulating nuclear DNA structural features, origins, and complete size profile revealed by fragmentomics. JCI Insight 2021; 6:e144561. https://doi.org/10.1172/jci.insight.144561.
doi: 10.1172/jci.insight.144561
|
[78] |
Ding SC, Lo YMD. Cell-free DNA fragmentomics in liquid biopsy. Diagnostics 2022; 12:978. https://doi.org/10.3390/diagnostics12040978.
doi: 10.3390/diagnostics12040978
|
[79] |
Shtumpf M, Piroeva KV, Agrawal SP, Jacob DR, Teif VB. NucPosDB: a database of nucleosome positioning in vivo and nucleosomics of cell-free DNA. Chromosoma 2022; 131: 19-28.
|
[80] |
Zhitnyuk YV, Koval AP, Alferov AA, Shtykova YA, Mamedov IZ, Kushlinskii NE, et al. Deep cfDNA fragment end profiling enables cancer detection. Mol Cancer 2022; 21:26. https://doi.org/10.1186/s12943-021-01491-8.
doi: 10.1186/s12943-021-01491-8
pmid: 35062943
|
[81] |
Jiang P, Chan CW, Chan KC, Cheng SH, Wong J, Wong VW, et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci U S A 20 15; 112:E1317-25. https://doi.org/10.1073/pnas.1500076112.
|
[82] |
Hellwig S, Nix DA, Gligorich KM, O’Shea JM, Thomas A, Fuertes CL, et al. Automated size selection for short cell-free DNA fragments enriches for circulating tumor DNA and improves error correction during next generation sequencing. PLoS One 2018; 13:e0197333. https://doi.org/10.1371/journal. pone.0197333.eCollection.2018.
|
[83] |
Zhang X, Wang Z, Tang W, Wang X, Liu R, Bao H, et al. Ultrasensitive and affordable assay for early detection of primary liver cancer using plasma cell-free DNA fragmentomics. Hepatology 2022; 76:317-29.
doi: 10.1002/hep.32308
|
[84] |
Arko-Boham B, Aryee NA, Blay RM, Owusu EDA, Tagoe EA, Doris Shackie ES, et al. Circulating cell-free DNA integrity as a diagnostic and prognostic marker for breast and prostate cancers. Cancer Genet 2019; 235e236:65-71.
|
[85] |
Chen E, Cario CL, Leong L, Lopez K, Marquez CP, Chu C, et al. Cell-free DNA concentration and fragment size as a biomarker for prostate cancer. Sci Rep 2021; 11:5040. https://doi.org/10.1038/s41598-021-84507-z.
doi: 10.1038/s41598-021-84507-z
pmid: 33658587
|
[86] |
Jiang P, Sun K, Tong YK, Cheng SH, Cheng THT, Heung MMS, et al. Preferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinoma. Proc Natl Acad Sci U S A 2018; 115: E10925-33. https://doi.org/10.1073/pnas.1814616115.
|
[87] |
Ulz P, Perakis S, Zhou Q, Moser T, Belic J, Lazzeri I, et al. Inference of transcription factor binding from cell-free DNA enables tumor subtype prediction and early detection. Nat Commun 2019; 10:4666. https://doi.org/10.1038/s41467-019-12714-4.
doi: 10.1038/s41467-019-12714-4
pmid: 31604930
|
[88] |
Zhang Y, Yao Y, Xu Y, Li L, Gong Y, Zhang K, et al. Pan-cancer circulating tumor DNA detection in over 10 000 Chinese patients. Nat Commun 2021; 12:11. https://doi.org/10.1038/s41467-020-20162-8.
doi: 10.1038/s41467-020-20162-8
|
[89] |
Razavi P, Li BT, Brown DN, Jung B, Hubbell E, Shen R, et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med 2019; 25:1928-37.
doi: 10.1038/s41591-019-0652-7
pmid: 31768066
|
[90] |
Cario CL, Chen E, Leong L, Emami NC, Lopez K, Tenggara I, et al. A machine learning approach to optimizing cell-free DNA sequencing panels: with an application to prostate cancer. BMC Cancer 2020; 20:820. https://doi.org/10.1186/s12885-020-07318-x.
doi: 10.1186/s12885-020-07318-x
pmid: 32859160
|
[91] |
Chen E, Cario CL, Leong L, Lopez K, Marquez CP, Li PS, et al. Cell-free DNA detection of tumor mutations in heterogeneous, localized prostate cancer via targeted, multiregion sequencing. JCO Precis Oncol 2021; 5:PO.20.00428. https://doi.org/10.1200/PO.20.00428.
|
[92] |
Fujita K, Nonomura N. Urinary biomarkers of prostate cancer. Int J Urol 2018; 25:770-9.
doi: 10.1111/iju.13734
pmid: 30129068
|
[93] |
Brikun I, Nusskern D, Freije D. An expanded biomarker panel for the detection of prostate cancer from urine DNA. Exp Hematol Oncol 2019; 8:13. https://doi.org/10.1186/s40164-019-0137-x.
|
[94] |
Pavan N, Grassi G, Scaggiante B. An update of aberrant methylation detection on circulating cell-free DNA as a tool to improve prostate cancer diagnosis and prognosis. J Transl Genet Genom 2021; 5:173-8.
|
[95] |
Casadio V, Calistri D, Salvi S, Gunelli R, Carretta E, Amadori D, et al. Urine cell-free DNA integrity as a marker for early prostate cancer diagnosis: a pilot study. BioMed Res Int 2013; 2013:270457. https://doi.org/10.1155/2013/270457.
|
[96] |
Salvi S, Gurioli G, Martignano F, Foca F, Gunelli R, Cicchetti G, et al. Urine cell-free DNA integrity analysis for early detection of prostate cancer patients. Dis Markers 2015; 2015:574120. https://doi.org/10.1155/2015/574120.
|
[97] |
Xia Y, Huang CC, Dittmar R, Du M, Wang Y, Liu H, et al. Copy number variations in urine cell free DNA as biomarkers in advanced prostate cancer. Oncotarget 2016; 7:35818-31.
doi: 10.18632/oncotarget.9027
pmid: 27127882
|
[98] |
Brikun I, Nusskern D, Decatus A, Harvey E, Li L, Freije D. A panel of DNA methylation markers for the detection of prostate cancer from FV and DRE urine DNA. Clin Epigenet 2018; 10:91. https://doi.org/10.1186/s13148-018-0524-x.
|
[99] |
Chen G, Jia G, Chao F, Xie F, Zhang Y, Hou C, et al. Urine- and blood-based molecular profiling of human prostate cancer. Front Oncol 2022; 12:759791. https://doi.org/10.3389/fonc.2022.759791.
doi: 10.3389/fonc.2022.759791
|
[100] |
Antonarakis ES, Tierno M, Fisher V, Tukachinsky H, Alexander S, Hamdani O, et al. Clinical and pathological features associated with circulating tumor DNA content in real-world patients with metastatic prostate cancer. Prostate 2022; 82:867-75.
doi: 10.1002/pros.24331
pmid: 35286728
|
[101] |
Kubota Y, Hatakeyama S, Yoneyama T, Yoneyama MS, Hamano I, Konishi S, et al. Prognostic significance of total plasma cell-free DNA level and androgen receptor amplification in castration-resistant prostate cancer. World J Urol 2021; 39:3265-71.
doi: 10.1007/s00345-021-03649-x
pmid: 33675416
|
[102] |
Fettke H, Kwan EM, Bukczynska P, Ng N, Nguyen-Dumont T, Southey MC, et al. Prognostic impact of total plasma cellfree DNA concentration in androgen receptor pathway inhibitor-treated metastatic castration-resistant prostate cancer. Eur Urol Focus 2021; 7:1287-91.
doi: 10.1016/j.euf.2020.07.001
pmid: 32739405
|
[103] |
Kohli M, Tan W, Zheng T, Wang A, Montesinos C, Wong C, et al. Clinical and genomic insights into circulating tumor DNA-based alterations across the spectrum of metastatic hormone-sensitive and castrate-resistant prostate cancer. EBioMedicine 2020; 54:102728. https://doi.org/10.1016/j.ebiom.2020.102728.
doi: 10.1016/j.ebiom.2020.102728
|
[104] |
Liu H, Gao Y, Vafaei S, Gu X, Zhong X. The prognostic value of plasma cell-free DNA concentration in the prostate cancer: a systematic review and meta-analysis. Front Oncol 2021; 11: 599602. https://doi.org/10.3389/fonc.2021.599602.
doi: 10.3389/fonc.2021.599602
|
[105] |
Belic J, Graf R, Bauernhofer T, Cherkas Y, Ulz P, Waldispuehl-Geigl J, et al. Genomic alterations in plasma DNA from patients with metastasized prostate cancer receiving abiraterone or enzalutamide. Int J Cancer 2018; 143:1236-48.
doi: 10.1002/ijc.31397
pmid: 29574703
|
[106] |
Attard G, Gormley M, Urtishak K, Simon JS, Ricci DS, Parekh TV, et al. Association of detectable levels of circulating tumor DNA (ctDNA) with disease burden in prostate cancer (PC). J Clin Oncol 2020; 38:5562. https://doi.org/10.1200/JCO.2020.38.15_suppl.5562.
|
[107] |
Reichert ZR, Morgan TM, Li G, Castellanos E, Snow T, Dall’Olio FG, et al. Prognostic value of plasma circulating tumor DNA fraction across four common cancer types: a realworld outcomes study. Ann Oncol 2023; 34:111-20.
doi: 10.1016/j.annonc.2022.09.163
|
[108] |
Wyatt AW, Annala M, Aggarwal R, Beja K, Feng F, Youngren J, et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer. J Natl Cancer Inst 2017; 109:djx118. https://doi.org/10.1093/jnci/djx118.
|
[109] |
Sonpavde G, Agarwal N, Pond GR, Nagy RJ, Nussenzveig RH, Hahn AW, et al. Circulating tumor DNA alterations in patients with metastatic castration-resistant prostate cancer. Cancer 2019; 125:1459-69.
doi: 10.1002/cncr.31959
pmid: 30620391
|
[110] |
Shaya J, Nonato T, Cabal A, Randall JM, Millard F, Stewart T, et al. Analysis of the prognostic significance of circulating tumor DNA in metastatic castrate resistant prostate cancer. Clin Genitourin Cancer 2021; 19:564 e1-10. https://doi.org/10.1016/j.clgc.2021.07.012.
doi: 10.1016/j.clgc.2020.06.007
|
[111] |
Gong Y, Fan L, Fei X, Zhu Y, Du X, He Y, et al. Targeted nextgeneration sequencing reveals heterogenous genomic features in viscerally metastatic prostate cancer. J Urol 2021; 206:279-88.
doi: 10.1097/JU.0000000000001731
|
[112] |
Kwan EM, Dai C, Fettke H, Hauser C, Docanto MM, Bukczynska P, et al. Plasma cell-free DNA profiling of PTENPI3K-AKT pathway aberrations in metastatic castrationresistant prostate cancer. JCO Precis Oncol 2021;5: PO. 20.00424. https://doi.org/10.1200/PO.20.00424.
|
[113] |
Londra D, Mastoraki S, Bournakis E, Zavridou M, Thanos A, Rampias T, et al. USP 44 promoter methylation in plasma cellfree DNA in prostate cancer. Cancers 2021; 13:4607. https://doi.org/10.3390/cancers13184607.
doi: 10.3390/cancers13184607
|
[114] |
Hendriks RJ, Dijkstra S, Smit FP, Vandersmissen J, Van de Voorde H, Mulders PFA, et al. Epigenetic markers in circulating cell-free DNA as prognostic markers for survival of castration-resistant prostate cancer patients. Prostate 2018; 78:336-42.
doi: 10.1002/pros.23477
pmid: 29330943
|
[115] |
Bastian PJ, Palapattu GS, Yegnasubramanian S, Rogers CG, Lin X, Mangold LA, et al. CpG island hypermethylation profile in the serum of men with clinically localized and hormone refractory metastatic prostate cancer. J Urol 2008; 179. 529-34.
doi: 10.1016/j.juro.2007.09.038
pmid: 18076941
|
[116] |
Haldrup C, Pedersen AL, ?gaard N, Strand SH, H?yer S, Borre M, et al. Biomarker potential of ST6GALNAC3 and ZNF660 promoter hypermethylation in prostate cancer tissue and liquid biopsies. Mol Oncol 2018;12:545-60.
|
[117] |
Sunami E, Shinozaki M, Higano CS, Wollman R, Dorff TB, Tucker SJ, et al. Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin Chem 2009; 55:559-67.
doi: 10.1373/clinchem.2008.108498
pmid: 19131636
|
[118] |
Bastian PJ, Palapattu GS, Lin X, Yegnasubramanian S, Mangold LA, Trock B, et al. Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostatespecific antigen recurrence following radical prostatectomy. Clin Cancer Res 2005; 11:4037-43.
doi: 10.1158/1078-0432.CCR-04-2446
|
[119] |
Mahon KL, Qu W, Lin HM, Spielman C, Cain D, Jacobs C, et al. Serum free methylated glutathione S-transferase 1 DNA levels, survival, and response to docetaxel in metastatic, castration-resistant prostate cancer: post hoc analyses of data from a phase 3 trial. Eur Urol 2019;76:306-12.
|
[120] |
Zhao SG, Chen WS, Li H, Foye A, Zhang M, Sjostrom M, et al. The DNA methylation landscape of advanced prostate cancer. Nat Genet 2020; 52:778-89.
doi: 10.1038/s41588-020-0648-8
pmid: 32661416
|
[121] |
Konishi S, Narita T, Hatakeyama S, Yoneyama T, Yoneyama MS, Tobisawa Y, et al. Utility of total cell-free DNA levels for surgical damage evaluation in patients with urological surgeries. Sci Rep 2021; 11:22103. https://doi.org/10.1038/s41598-021-01430-z.
doi: 10.1038/s41598-021-01430-z
pmid: 34764347
|
[122] |
Den RB, Feng FY, Showalter TN, Mishra MV, Trabulsi EJ, Lallas CD, et al. Genomic prostate cancer classifier predicts biochemical failure and metastases in patients after postoperative radiation therapy. Int J Radiat Oncol Biol Phys 2014; 89:1038-46.
doi: 10.1016/j.ijrobp.2014.04.052
|
[123] |
Ross AE, Feng FY, Ghadessi M, Erho N, Crisan A, Buerki C, et al. A genomic classifier predicting metastatic disease progression in men with biochemical recurrence after prostatectomy. Prostate Cancer Prostatic Dis 2014; 17:64-9.
doi: 10.1038/pcan.2013.49
|
[124] |
Wang L, Xie PG, Lin YL, Ma JG, Li WP. Aberrant methylation of PCDH10 predicts worse biochemical recurrence-free survival in patients with prostate cancer after radical prostatectomy. Med Sci Monit 2014; 20:1363-8.
doi: 10.12659/MSM.891241
|
[125] |
Lin YL, Li YL, Ma JG. Aberrant promoter methylation of protocadherin8 (PCDH8) in serum is a potential prognostic marker for low Gleason score prostate cancer. Med Sci Monit 2017;23:4895-900.
|
[126] |
Necchi A, Cucchiara V, Grivas P, Bratslavsky G, Jacob J, Spiess PE, et al. Contrasting genomic profiles from metastatic sites, primary tumors, and liquid biopsies of advanced prostate cancer. Cancer 2021; 127:4557-64.
doi: 10.1002/cncr.33865
pmid: 34379803
|
[127] |
Jung K, Stephan C, Lewandowski M, Klotzek S, Jung M, Kristiansen G, et al. Increased cell-free DNA in plasma of patients with metastatic spread in prostate cancer. Cancer Lett 2004; 205:173-80.
pmid: 15036649
|
[128] |
Lau E, McCoy P, Reeves F, Chow K, Clarkson M, Kwan EM, et al. Detection of ctDNA in plasma of patients with clinically localised prostate cancer is associated with rapid disease progression. Genome Med 2020; 12:72. https://doi.org/10.1186/s13073-020-00770-1.
doi: 10.1186/s13073-020-00770-1
pmid: 32807235
|
[129] |
Tukachinsky H, Madison RW, Chung JH, Gjoerup OV, Severson EA, Dennis L, et al. Genomic analysis of circulating tumor DNA in 3334 patients with advanced prostate cancer identifies targetable BRCA alterations and AR resistance mechanisms. Clin Cancer Res 2021; 27:3094-105.
doi: 10.1158/1078-0432.CCR-20-4805
pmid: 33558422
|
[130] |
Zhao J, Sun G, Zhu S, Dai J, Chen J, Zhang M, et al. Circulating tumour DNA reveals genetic traits of patients with intraductal carcinoma of the prostate. BJU Int 2022; 129: 345-55.
doi: 10.1111/bju.v129.3
|
[131] |
Vellky JE, Ricke WA. Development and prevalence of castration-resistant prostate cancer subtypes. Neoplasia 2020; 22:566-75.
doi: S1476-5586(20)30148-2
pmid: 32980775
|
[132] |
Azad AA, Volik SV, Wyatt AW, Haegert A, Le Bihan S, Bell RH, et al. Androgen receptor gene aberrations in circulating cellfree DNA: biomarkers of therapeutic resistance in castrationresistant prostate cancer. Clin Cancer Res 2015; 21:2315-24.
doi: 10.1158/1078-0432.CCR-14-2666
|
[133] |
Romanel A, Gasi Tandefelt D, Conteduca V, Jayaram A, Casiraghi N, Wetterskog D, et al. Plasma AR and abirateroneresistant prostate cancer. Sci Transl Med 2015; 7:312re10. https://doi.org/10.1126/scitranslmed.aac9511.
|
[134] |
Wyatt AW, Azad AA, Volik SV, Annala M, Beja K, McConeghy B, et al. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol 2016; 2:1598-606.
doi: 10.1001/jamaoncol.2016.0494
pmid: 27148695
|
[135] |
Conteduca V, Wetterskog D, Sharabiani MTA, Grande E, Fernandez-Perez MP, Jayaram A, et al. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Ann Oncol 2017; 28:1508-16.
doi: 10.1093/annonc/mdx155
pmid: 28472366
|
[136] |
Fettke H, Kwan EM, Docanto MM, Bukczynska P, Ng N, Graham LK, et al. Combined cell-free DNA and RNA profiling of the androgen receptor: clinical utility of a novel multianalyte liquid biopsy assay for metastatic prostate cancer. Eur Urol 2020; 78:173-80.
doi: S0302-2838(20)30219-0
pmid: 32487321
|
[137] |
Del Re M, Conteduca V, Crucitta S, Gurioli G, Casadei C, Restante G, et al. Androgen receptor gain in circulating free DNA and splicing variant 7 in exosomes predict clinical outcome in CRPC patients treated with abiraterone and enzalutamide. Prostate Cancer Prostatic Dis 2021; 24: 524-31.
doi: 10.1038/s41391-020-00309-w
|
[138] |
Gonzalez-Billalabeitia E, Conteduca V, Wetterskog D, Jayaram A, Attard G. Circulating tumor DNA in advanced prostate cancer: transitioning from discovery to a clinically implemented test. Prostate Cancer Prostatic Dis 2019; 22: 195-205.
doi: 10.1038/s41391-018-0098-x
|
[139] |
Fan L, Fei X, Zhu Y, Pan J, Sha J, Chi C, et al. Comparative analysis of genomic alterations across castration sensitive and castration resistant prostate cancer via circulating tumor DNA sequencing. J Urol 2021; 205:461-9.
doi: 10.1097/JU.0000000000001363
|
[140] |
Annala M, Vandekerkhove G, Khalaf D, Taavitsainen S, Beja K, Warner EW, et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov 2018; 8:444-57.
doi: 10.1158/2159-8290.CD-17-0937
pmid: 29367197
|
[141] |
de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 2020; 382:2091-102.
doi: 10.1056/NEJMoa1911440
|
[142] |
Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 2015; 373:1697-708.
doi: 10.1056/NEJMoa1506859
|
[143] |
Yuan F, Liu N, Yang MZ, Zhang XT, Luo H, Zhou H. Circulating tumor DNA genomic profiling reveals the complicated olaparib-resistance mechanism in prostate cancer salvage therapy: a case report. World J Clin Cases 2022; 10:3461-71.
|
[144] |
Hussain M, Corcoran C, Sibilla C, Fizazi K, Saad F, Shore N, et al. Tumor genomic testing for >4000 men with metastatic castration-resistant prostate cancer in the phase III trial PROfound (Olaparib). Clin Cancer Res 2022;28:1518-30.
|
[145] |
Matsubara N, Bono JSD, Olmos D, Procopio G, Kawakami S, Urun Y, et al. Olaparib efficacy in patients with metastatic castration-resistant prostate cancer (mCRPC) carrying circulating tumor (ct) DNA alterations in BRCA1, BRCA2 or ATM: results from the PROfound study. J Clin Oncol 2021; 39(Suppl. 6):27. https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.6_suppl.27.
|
[146] |
Hussain M, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, et al. Survival with olaparib in metastatic castration-resistant prostate cancer. N Engl J Med 2020; 383:2345-57.
doi: 10.1056/NEJMoa2022485
|
[147] |
Schweizer MT, Sivakumar S, Tukachinsky H, Coleman I, De Sarkar N, Yu EY, et al. Concordance of DNA repair gene mutations in paired primary prostate cancer samples and metastatic tissue or cell-free DNA. JAMA Oncol 2021; 7:1-5.
|
[148] |
Goodall J, Mateo J, Yuan W, Mossop H, Porta N, Miranda S, et al. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov 2017; 7: 1006-17.
doi: 10.1158/2159-8290.CD-17-0261
pmid: 28450425
|
[149] |
Jin Y, Chen DL, Wang F, Yang CP, Chen XX, You JQ, et al. The predicting role of circulating tumor DNA landscape in gastric cancer patients treated with immune checkpoint inhibitors. Mol Cancer 2020; 19:154. https://doi.org/10.1186/s12943-020-01274-7.
doi: 10.1186/s12943-020-01274-7
pmid: 33126883
|
[150] |
Lopez-Campos F, Gajate P, Romero-Laorden N, Zafra-Martin J, Juan M, Hernando Polo S, et al. Immunotherapy in advanced prostate cancer: current knowledge and future directions. Biomedicines 2022; 10:537. https://doi.org/10.3390/biomedicines10030537.
doi: 10.3390/biomedicines10030537
|
[151] |
Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 2020;10:727-42.
|
[152] |
Barata P, Agarwal N, Nussenzveig R, Gerendash B, Jaeger E, Hatton W, et al. Clinical activity of pembrolizumab in metastatic prostate cancer with microsatellite instability high (MSI-H) detected by circulating tumor DNA. J Immunother Cancer 2020; 8:e001065. https://doi.org/10.1136/jitc-2020-001065.
|
[153] |
Kwan EM, Spain L, Anton A, Gan CL, Garrett L, Chang D, et al. Avelumab combined with stereotactic ablative body radiotherapy in metastatic castration-resistant prostate cancer: the phase 2 ICE-PAC clinical trial. Eur Urol 2022; 81: 253-62.
doi: 10.1016/j.eururo.2021.08.011
|
[154] |
Warner E, Herberts C, Fu S, Yip S, Wong A, Wang G, et al. BRCA2, ATM, and CDK12 defects differentially shape prostate tumor driver genomics and clinical aggression. Clin Cancer Res 2021;27:1650-62.
|
[155] |
Reimers MA, Yip SM, Zhang L, Cieslik M, Dhawan M, Montgomery B, et al. Clinical outcomes in cyclin-dependent kinase 12 mutant advanced prostate cancer. Eur Urol 2020; 77:333-41.
doi: S0302-2838(19)30764-X
pmid: 31640893
|
[156] |
Schweizer MT, Ha G, Gulati R, Brown LC, McKay RR, Dorff T, et al. CDK12-mutated prostate cancer: clinical outcomes with standard therapies and immune checkpoint blockade. JCO Precis Oncol 2020; 4:382-92.
doi: 10.1200/po.19.00383
pmid: 32671317
|
[157] |
Pan E, Cabal A, Javier-DesLoges J, Patel D, Panian J, Lee S, et al. Analysis of CDK12 alterations in a pan-cancer database. Cancer Med 2022; 11:753-63.
|
[158] |
Dong B, Fan L, Yang B, Chen W, Li Y, Wu K, et al. Use of circulating tumor DNA for the clinical management of metastatic castration-resistant prostate cancer: a multicenter, real-world study. J Natl Compr Cancer Netw 2021; 19:905-14.
|
[159] |
Sumanasuriya S, Seed G, Parr H, Christova R, Pope L, Bertan C, et al. Elucidating prostate cancer behaviour during treatment via low-pass whole-genome sequencing of circulating tumour DNA. Eur Urol 2021; 80:243-53.
|
[160] |
Carson JJK, Di Lena MA, Berman DM, Siemens DR, Mueller CR. Development and initial clinical correlation of a DNA methylation-based blood test for prostate cancer. Prostate 2020; 80:1038-42.
doi: 10.1002/pros.24025
pmid: 32506642
|
[161] |
Rebello RJ, Oing C, Knudsen KE, Loeb S, Johnson DC, Reiter RE, et al. Prostate cancer. Nat Rev Dis Prim 2021; 7:9.https://doi.org/10.1038/s41572-020-00243-0.
|
[162] |
Puca L, Vlachostergios PJ, Beltran H. Neuroendocrine differentiation in prostate cancer: emerging biology, models, and therapies. Cold Spring Harb Perspect Med 2019; 9: a030593. https://doi.org/10.1101/cshperspect.a030593.
doi: 10.1101/cshperspect.a030593
|
[163] |
Parsons HA, Rhoades J, Reed SC, Gydush G, Ram P, Exman P, et al. Sensitive detection of minimal residual disease in patients treated for early-stage breast cancer. Clin Cancer Res 2020; 26:2556-64.
doi: 10.1158/1078-0432.CCR-19-3005
pmid: 32170028
|
[164] |
Nagasaka M, Uddin MH, Al-Hallak MN, Rahman S, Balasubramanian S, Sukari A, et al. Liquid biopsy for therapy monitoring in early-stage non-small cell lung cancer. Mol Cancer 2021; 20:82. https://doi.org/10.1186/s12943-021-01371-1.
doi: 10.1186/s12943-021-01371-1
pmid: 34074295
|
[165] |
Wang DS, Yang H, Liu XY, Chen ZG, Wang Y, Fong WP, et al. Dynamic monitoring of circulating tumor DNA to predict prognosis and efficacy of adjuvant chemotherapy after resection of colorectal liver metastases. Theranostics 2021; 11:7018-28.
doi: 10.7150/thno.59644
pmid: 34093868
|
[166] |
Chauhan PS, Chen K, Babbra RK, FengW, Pejovic N, Nallicheri A, et al. Urine tumor DNA detection of minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy: a cohort study. PLoS Med 2021; 18: e1003732. https://doi.org/10.1371/journal.pmed.1003732.
doi: 10.1371/journal.pmed.1003732
|
[167] |
Schmid S, Omlin A. Progress in therapy across the spectrum of advanced prostate cancer. Nat Rev Urol 2020; 17: 71-2.
doi: 10.1038/s41585-019-0270-7
pmid: 31844170
|
[168] |
Sandhu S, Moore CM, Chiong E, Beltran H, Bristow RG, Williams SG. Prostate cancer. Lancet 2021; 398:1075-90.
doi: 10.1016/S0140-6736(21)00950-8
|
[169] |
Rosellini M, Santoni M, Mollica V, Rizzo A, Cimadamore A, Scarpelli M, et al. Treating prostate cancer by antibody-drug conjugates. Int J Mol Sci 2021; 22:1551. https://doi.org/10.3390/ijms22041551.
doi: 10.3390/ijms22041551
|
[170] |
Nuzzo P, Spisak S, Chakravarthy A, Shen SY, Berchuck JE, Nassar A, et al. Cell-free methylated DNA (cfMeDNA) immunoprecipitation and high throughput sequencing technology (cfMeDIP-seq) in patients with clear cell renal cell carcinoma (ccRCC). J Clin Oncol 2019; 37(Suppl 15):3052. https://doi.org/10.1200/JCO.2019.37.15_suppl.3052.
|
[171] |
Nuzzo PV, Berchuck JE, Korthauer K, Spisak S, Nassar AH, Abou Alaiwi S, et al. Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes. Nat Med 2020; 26:1041-3.
doi: 10.1038/s41591-020-0933-1
pmid: 32572266
|
[172] |
Qi J, Hong B, Tao R, Sun R, Zhang H, Zhang X, et al. Prediction model for malignant pulmonary nodules based on cfMeDIP-seq and machine learning. Cancer Sci 2021; 112: 3918-23.
doi: 10.1111/cas.v112.9
|
[173] |
Chi KN, Barnicle A, Sibilla C, Lai Z, Corcoran C, Williams JA, et al. Concordance of BRCA1, BRCA2 (BRCA), and ATM mutations identified in matched tumor tissue and circulating tumor DNA (ctDNA) in men with metastatic castrationresistant prostate cancer (mCRPC) screened in the PROfound study. J Clin Oncol 2021;39(Suppl 26):26. https://doi.org/10.1200/JCO.2021.39.6_suppl.26.
|
[174] |
Lozano R, Castro E, Aragon IM, Cendon Y, Cattrini C, Lopez-Casas PP, et al. Genetic aberrations in DNA repair pathways: a cornerstone of precision oncology in prostate cancer. Br J Cancer 2021; 124:552-63.
doi: 10.1038/s41416-020-01114-x
|
[175] |
Nguyen B, Mota JM, Nandakumar S, Stopsack KH, Weg E, Rathkopf D, et al. Pan-cancer analysis of CDK12 alterations identifies a subset of prostate cancers with distinct genomic and clinical characteristics. Eur Urol 2020; 78:671-9.
doi: 10.1016/j.eururo.2020.03.024
pmid: 32317181
|
[176] |
Liu Y, Zhou K, Guo S, Wang Y, Ji X, Yuan Q, et al. NGS-based accurate and efficient detection of circulating cell-free mitochondrial DNA in cancer patients. Mol Ther Nucleic Acids 2021; 23:657-66.
doi: 10.1016/j.omtn.2020.12.017
|
[177] |
Vandekerkhove G, Struss WJ, Annala M, Kallio HML, Khalaf D, Warner EW, et al. Circulating tumor DNA abundance and potential utility in de novo metastatic prostate cancer. Eur Urol 2019; 75:667-75.
doi: S0302-2838(18)31050-9
pmid: 30638634
|
[1] |
Shulin Wu,Sharron X. Lin,Kristine M. Cornejo,Rory K. Crotty,Michael L. Blute,Douglas M. Dahl,Chin-Lee Wu. Clinicopathological and oncological significance of persistent prostate-specific antigen after radical prostatectomy: A systematic review and meta-analysis[J]. Asian Journal of Urology, 2023, 10(3): 317-328. |
[2] |
Stefano Alba,Deborah Fimognari,Fabio Crocerossa,Luigi Ascalone,Carmine Pullano,Fernando Chiaravalloti,Francesco Chiaradia,Umberto Carbonara,Matteo Ferro,Ottavio de Cobelli,Vincenzo Pagliarulo,Giuseppe Lucarelli,Michele Battaglia,Rocco Damiano,Francesco Cantiello. Neuraxial anesthesia versus general anesthesia in patients undergoing three-dimensional laparoscopic radical prostatectomy: Preliminary results of a prospective comparative study[J]. Asian Journal of Urology, 2023, 10(3): 329-336. |
[3] |
Fabricio B. Carrerette,Daniela B. Rodeiro,Rui T. F. Filho,Paulo A. Santos,Celso C. Lara,Ronaldo Damião. Randomized controlled trial comparing open anterograde anatomic radical retropubic prostatectomy with retrograde technique[J]. Asian Journal of Urology, 2023, 10(2): 151-157. |
[4] |
Sat Prasad Nepal,Takehiko Nakasato,Takashi Fukagai,Yoshio Ogawa,Yoshihiro Nakagami,Takeshi Shichijo,Jun Morita,Yoshiko Maeda,Kazuhiko Oshinomi,Tsutomu Unoki,Tetsuo Noguchi,Tatsuki Inoue,Ryosuke Kato,Satoshi Amano,Moyuru Mizunuma,Masahiro Kurokawa,Yoshiki Tsunokawa,Sou Yasuda. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios alone or combined with prostate-specific antigen for the diagnosis of prostate cancer and clinically significant prostate cancer[J]. Asian Journal of Urology, 2023, 10(2): 158-165. |
[5] |
Bambang S. Noegroho,Kuncoro Adi,Akhmad Mustafa,Rais Syaeful Haq,Zola Wijayanti,Jason Liarto. The role of quick Sepsis-related Organ Failure Assessment score as simple scoring system to predict Fournier gangrene mortality and the correlation with Fournier's Gangrene Severity Index: Analysis of 69 patients[J]. Asian Journal of Urology, 2023, 10(2): 201-207. |
[6] |
Hua Gong,Kang Chen,Lan Zhou,Yongchao Jin,Weihua Chen. Deleted in liver cancer 1 suppresses the growth of prostate cancer cells through inhibiting Rho-associated protein kinase pathway[J]. Asian Journal of Urology, 2023, 10(1): 50-57. |
[7] |
Leandro Blas,Masaki Shiota,Shohei Nagakawa,Shigehiro Tsukahara,Takashi Matsumoto,Ken Lee,Keisuke Monji,Eiji Kashiwagi,Junichi Inokuchi,Masatoshi Eto. Validation of user-friendly models predicting extracapsular extension in prostate cancer patients[J]. Asian Journal of Urology, 2023, 10(1): 81-88. |
[8] |
Donghua Xie,Di Gu,Ming Lei,Cong Cai,Wen Zhong,Defeng Qi,Wenqi Wu,Guohua Zeng,Yongda Liu. The application of indocyanine green in guiding prostate cancer treatment[J]. Asian Journal of Urology, 2023, 10(1): 1-8. |
[9] |
Liang G. Qu,Gregory Jack,Marlon Perera,Melanie Evans,Sue Evans,Damien Bolton,Nathan Papa. Impact of delay from transperineal biopsy to radical prostatectomy upon objective measures of cancer control[J]. Asian Journal of Urology, 2022, 9(2): 170-176. |
[10] |
Jie Cao,Chunxue Peng,Xiaoying Lu,Lingjun Zhou,Jing Wu. Factors influencing the degree of participation in surgical decision-making among Chinese patients with prostate cancer: A qualitative research[J]. Asian Journal of Urology, 2022, 9(2): 177-185. |
[11] |
Georgios Tsampoukas,Victor Manolas,Dominic Brown,Athanasios Dellis,Konstantinos Deliveliotis,Mohamad Moussa,Athanasios Papatsoris. Atypical small acinar proliferation and its significance in pathological reports in modern urological times[J]. Asian Journal of Urology, 2022, 9(1): 12-17. |
[12] |
Christa Babst,Thomas Amiel,Tobias Maurer,Sophie Knipper,Lukas Lunger,Robert Tauber,Margitta Retz,Kathleen Herkommer,Matthias Eiber,Gunhild von Amsberg,Markus Graefen,Juergen Gschwend,Thomas Steuber,Matthias Heck. Cytoreductive radical prostatectomy after chemohormonal therapy in patients with primary metastatic prostate cancer[J]. Asian Journal of Urology, 2022, 9(1): 69-74. |
[13] |
Edward K. Chang,Adam J. Gadzinski,Yaw A. Nyame. Blood and urine biomarkers in prostate cancer: Are we ready for reflex testing in men with an elevated prostate-specific antigen?[J]. Asian Journal of Urology, 2021, 8(4): 343-353. |
[14] |
Luke P. O’Connor,Shayann Ramedani,Michael Daneshvar,Arvin K. George,Andre Luis Abreu,Giovanni E. Cacciamani,Amir H. Lebastchi. Future perspective of focal therapy for localized prostate cancer[J]. Asian Journal of Urology, 2021, 8(4): 354-361. |
[15] |
Shuchi Gulati,Nicholas J. Vogelzang. Biomarkers in renal cell carcinoma: Are we there yet?[J]. Asian Journal of Urology, 2021, 8(4): 362-375. |
|
|
|
|