|
|
Metabolic syndrome and the urinary microbiome of patients undergoing percutaneous nephrolithotomy |
Ryan A. Dornbiera,Chirag P. Doshia,Shalin C. Desaia,*( ),Petar Bajica,Michelle Van Kuikena,Mark Khemmanib,Ahmer V. Farooqa,Larissa Breslera,Thomas M.T. Turka,Alan J. Wolfeb,Kristin G. Baldeaa
|
aLoyola University Medical Center, Department of Urology, Maywood, IL, USA bLoyola University Chicago, Department of Microbiology and Immunology, Maywood, IL, USA |
|
|
Abstract Objective: To identify possible stone-promoting microbes, we compared the profiles of microbes grown from stones of patients with and without metabolic syndrome (MetS). The association between MetS and urinary stone disease is well established, but the exact pathophysiologic relationship remains unknown. Recent evidence suggests urinary tract dysbiosis may lead to increased nephrolithiasis risk. Methods: At the time of percutaneous nephrolithotomy, bladder urine and stone fragments were collected from patients with and without MetS. Both sample types were subjected to expanded quantitative urine culture (EQUC) and 16 S ribosomal RNA gene sequencing. Results: Fifty-seven patients included 12 controls (21.1%) and 45 MetS patients (78.9%). Both cohorts were similar with respect to demographics and non-MetS comorbidities. No controls had uric acid stone composition. By EQUC, bacteria were detected more frequently in MetS stones (42.2%) compared to controls (8.3%) (p=0.041). Bacteria also were more abundant in stones of MetS patients compared to controls. To validate our EQUC results, we performed 16 S ribosomal RNA gene sequencing. In 12/16 (75.0%) sequence-positive stones, EQUC reliably isolated at least one species of the sequenced genera. Bacteria were detected in both “infectious” and “non-infectious” stone compositions. Conclusion: Bacteria are more common and more abundant in MetS stones than control stones. Our findings support a role for bacteria in urinary stone disease for patients with MetS regardless of stone composition.
|
Received: 15 April 2022
Available online: 20 April 2024
|
Corresponding Authors:
* E-mail address: kbaldea@lumc.edu (S.C. Desai).
|
|
|
Baseline patient demographic and medical characteristic | Total | Control | MetS | p-Value | Samples collected, n | 57 | 12 | 45 | NA | Age, median (range), year | 62.3 (31.1-83.0) | 62.3 (42.0-69.9) | 62.8 (31.1-83.0) | 0.660 | Gender, n (%) | | | | 0.504 | Female | 36 (63.2) | 9 (75.0) | 27 (60.0) | | Male | 21 (36.8) | 3 (25.0) | 18 (40.0) | | Race or ethnicity, n (%) | | | | 0.484 | Caucasian | 47 (82.5) | 10 (83.3) | 37 (82.2) | | African American | 1 (1.8) | 1 (8.3) | 0 | | Hispanic | 6 (10.5) | 1 (8.3) | 5 (11.1) | | Asian | 2 (3.5) | 0 | 2 (4.4) | | Unknown | 1 (1.8) | 0 | 1 (2.2) | | Height, mean±SD, cm | 167.8±11.2 | 164.7±7.8 | 168.6±11.8 | 0.250 | Weight, mean±SD, kg | 95.4±27.0 | 78.5±31.9 | 99.8±24.0 | 0.011 | Body mass index, mean±SD, kg/m2 | 33.9±9.5 | 28.9±11.7 | 35.2±8.5 | 0.036 | MetS criteria, n (%) | Blood pressure of >130/85 mmHg or one anti-hypertensive medication, n (%) | 46 (80.7) | 4 (33.3) | 42 (93.3) | <0.001 | Waist circumference over 89 cm (women) or 102 cm (men)a,b | 25 (73.5) | 3 (33.3) | 22 (88.0) | 0.004 | Fasting triglyceride level of >150 mg/dLb | 40 (71.4) | 2 (16.7) | 38 (86.3) | <0.001 | Fasting HDL level of <50 mg/dL (women) or <40 mg/dL (men) or dyslipidemia treatmentb | 43 (76.8) | 4 (33.3) | 39 (88.6) | <0.001 | Fasting glucose level of >100 mg/dL or diabetes treatment | 38 (66.7) | 2 (16.7) | 36 (80.0) | <0.001 | Urologic history, n (%) | Indwelling Foley catheter or suprapubic tube | 0 (0) | 0 | 0 | NA | CIC | 0 (0) | 0 | 0 | NA | Prior indwelling ureteral stent or nephrostomy tube | 9 (15.8) | 1 (8.3) | 8 (17.8) | 0.669 | History of recurrent urinary tract infections | 13 (22.8) | 4 (33.3) | 9 (20.0) | 0.440 | Prior medical stone prevention | 13 (22.8) | 2 (16.7) | 11 (24.4) | 0.713 | Antibiotic use within 30 days (excluding prophylactic antibiotics) | 11 (19.3) | 1 (8.3) | 10 (22.2) | 0.426 | Periprocedural antibiotic duration prior to specimen collection, n (%) | | | | 0.058 | <3 h | 4 (7.0) | 2 (16.7) | 2 (4.4) | | 3-<6 h | 2 (3.5) | 1 (8.3) | 1 (2.2) | | 6-<12 h | 1 (1.8) | 1 (8.3) | 0 | | 12-<24 h | 38 (66.7) | 7 (58.3) | 31 (68.9) | | ≥24 h | 12 (21.1) | 1 (8.3) | 11 (24.4) | |
|
Baseline patient demographics and medical characteristics comparing patients with MetS to controls.
|
|
Growth of bacteria on expanded quantitative urine culture. (A) Urinary stone; (B) Bladder urine; (C) Stone chemical composition of the corresponding stone. The solid black line marks the division of control and metabolic syndrome patients. Each column above or below corresponds to the same patient.
|
|
16 S rRNA gene sequencing of bladder and stone samples from controls and metabolic syndrome patients. The solid black vertical lines separate paired sampled.
|
Sample ID | Sample cohort | Stone culture genera | Stone sequence dominant genera | Bladder culture genera | Bladder sequence dominant genera | Bray-Curtis index between stone and bladder sequencing | 5 | Control | NA | Proteus | NA | Escherichia, Aerococcus, Lactobacillus | 0.993 | 41 | Control | Corynebacterium | Corynebacterium | Corynebacterium | Corynebacterium | 0.076 | 3 | MetS | Proteus | Escherichia, Bifidobacterium | Escherichia | Escherichia, Proteus, Bifidobacterium | 0.410 | 8 | MetS | NA | Veillonella | NA | Sneathia, Veillonella, Ureaplasma | 0.528 | 11 | MetS | Aerococcus | Aerococcus | NA | Aerococcus, peptoniphilus, Anaerococcus | 0.379 | 21 | MetS | Staphylococcus | Streptococcus | NA | Staphylococcus | 0.939 | 23 | MetS | Aerococcus | Aerococcus | NA | NA | NA | 26 | MetS | Staphylococcus | Staphylococcus | Staphylococcus | Staphylococcus | 0.041 | 30 | MetS | Aerococcus, Proteus | Streptococcus, Aerococcus, Proteus | Actinomyces, Aerococcus, Enterococcus | Peptoniphilus | 0.326 | 34 | MetS | Proteus | Proteus | NA | Proteus | 0.201 | 40 | MetS | Proteus | Proteus, Klebsiella | NA | NA | NA | 42 | MetS | Enterococcus | Enterococcus | NA | Enterococcus | 0.124 | 50 | MetS | NA | Staphylococcus | Staphylococcus | Ureaplasma | 0.987 | 52 | MetS | Proteus | Proteus | Aerococcus | Aerococcus, Proteus | 0.848 | 53 | MetS | Aerococcus, Streptococcus | Streptococcus | NA | Aerococcus, Streptococcus, Fusobacterium | 0.552 | 55 | MetS | Proteus | Proteus | NA | Lactobacillus | 0.905 |
|
Comparison of stone culture, stone sequencing, bladder culture, and bladder sequencing genera from the same study participant.
|
[1] |
Sorokin I, Mamoulakis C, Miyazawa K, Rodgers A, Talati J, Lotan Y. Epidemiology of stone disease across the world. World J Urol 2017; 35:1301e20.
doi: 10.1007/s00345-017-2008-6
pmid: 28213860
|
[2] |
Scales CD Jr, Smith AC, Hanley JM, Saigal CS; Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur Urol 2012; 62:160e5.
|
[3] |
Ziemba JB, Matlaga BR. Epidemiology and economics of nephrolithiasis. Investig Clin Urol 2017; 58:299e306.
doi: 10.4111/icu.2017.58.5.299
pmid: 28868500
|
[4] |
DiBianco JM, Jarrett TW, Mufarrij P. Metabolic syndrome and nephrolithiasis risk: should the medical management of nephrolithiasis include the treatment of metabolic syndrome? Rev Urol 2015; 17:117e28.
pmid: 26543426
|
[5] |
Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech 2009; 2:231e7.
doi: 10.1242/dmm.001180
pmid: 19407331
|
[6] |
Hirode G, Wong RJ. Trends in the prevalence of metabolic syndrome in the United States, 2011e20162016. JAMA 2020; 323: 2526e8.
doi: 10.1001/jama.2020.4501
|
[7] |
Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep 2018; 20:12. https://doi.org/10.1007/s11906-018-0812-z.
doi: 10.1007/s11906-018-0812-z
pmid: 29480368
|
[8] |
Kadlec AO, Greco K, Fridirici ZC, Hart ST, Vellos T, Turk TM. Metabolic syndrome and urinary stone composition: what factors matter most? Urology 2012; 80:805e10.
doi: 10.1016/j.urology.2012.05.011
pmid: 22795374
|
[9] |
Wong Y, Cook P, Roderick P, Somani BK. Metabolic syndrome and kidney stone disease: a systematic review of literature. J Endourol 2016; 30:246e53.
doi: 10.1089/end.2015.0567
pmid: 26576717
|
[10] |
Boyd C, Wood K, Whitaker D, Assimos DG. The influence of metabolic syndrome and its components on the development of nephrolithiasis. Asian J Urol 2018; 5:215e22.
doi: 10.1016/j.ajur.2018.06.002
pmid: 30364536
|
[11] |
Ramaswamy K, Shah O. Metabolic syndrome and nephrolithiasis. Transl Androl Urol 2014; 3:285e95.
doi: 10.3978/j.issn.2223-4683.2014.06.03
pmid: 26816779
|
[12] |
Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol 2020; 11:571731. https://doi.org/10.3389/fimmu.2020.571731.
doi: 10.3389/fimmu.2020.571731
|
[13] |
Dornbier RA, Bajic P, Van Kuiken M, Jardaneh A, Lin H, Gao X, et al. The microbiome of calcium-based urinary stones. Urolithiasis 2020; 48:191e9.
doi: 10.1007/s00240-019-01146-w
pmid: 31240349
|
[14] |
Hilt EE, McKinley K, Pearce MM, Rosenfeld AB, Zilliox MJ, Mueller ER, et al. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J Clin Microbiol 2014; 52: 871e6.
doi: 10.1128/JCM.02876-13
pmid: 24371246
|
[15] |
Brubaker L, Gourdine JF, Siddiqui NY, Holland A, Halverson T, Limeri R, et al. Forming consensus to advance urobiome research. mSystems 2021; 6:e0137120. https://doi.org/10.1128/mSystems.01371-20.
doi: 10.1128/mSystems.01371-20
|
[16] |
Martin M. Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet J 2011; 17:10e2.
|
[17] |
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 2016; 13:581e3.
doi: 10.1038/nmeth.3869
pmid: 27214047
|
[18] |
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590e6. https://doi.org/10.1093/nar/gks1219.
|
[19] |
Kindt R, Coe R. Tree Diversity Analysis: a manual and software for common statistical methods for ecological and biodiversity studies. Nairobi: World Agroforestry Centre (ICRAF); 2005. p. 161.
|
[20] |
Bray JR, Roger Bray J, Curtis JT. An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 1957; 27:325e49.
doi: 10.2307/1942268
|
[21] |
Spatola L, Ferraro PM, Gambaro G, Badalamenti S, Dauriz M. Metabolic syndrome and uric acid nephrolithiasis: insulin resistance in focus. Metabolism 2018; 83:225e33.
doi: 10.1016/j.metabol.2018.02.008
|
[22] |
Festa A, D’agostino R, Howard G, Mykk?nen L, Tracy RP, Haffner SM. Inflammation and microalbuminuria in nondiabetic and type 2 diabetic subjects: the Insulin Resistance Atherosclerosis Study. Kidney Int 2000;58: 1703e10.
|
[23] |
Suen JL, Liu CC, Lin YS, Tsai YF, Juo SHH, Chou YH. Urinary chemokines/cytokines are elevated in patients with urolithiasis. Urol Res 2010; 38:81e7.
doi: 10.1007/s00240-010-0260-y
|
[24] |
Schwaderer AL, Wolfe AJ. The association between bacteria and urinary stones. Ann Transl Med 2017; 5:32. https://doi.org/10.21037/atm.2016.11.73.
doi: 10.21037/atm.2016.11.73
pmid: 28217697
|
[25] |
Zampini A, Nguyen AH, Rose E, Monga M, Miller AW. Defining dysbiosis in patients with urolithiasis. Sci Rep 2019; 9:5425. https://doi.org/10.1038/s41598-019-41977-6.
doi: 10.1038/s41598-019-41977-6
pmid: 30932002
|
[26] |
Barr-Beare E, Saxena V, Hilt EE, Thomas-White K, Schober M, Li B, et al. The interaction between Enterobacteriaceae and calcium oxalate deposits. PLoS One 2015; 10:e0139575. https://doi.org/10.1371/journal.pone.0139575.
doi: 10.1371/journal.pone.0139575
|
[27] |
Eckel RH, Alberti K, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2010; 375:181e3.
doi: 10.1016/S0140-6736(09)61794-3
pmid: 20109902
|
[28] |
Kachroo N, Lange D, Penniston KL, Stern J, Tasian G, Bajic P, et al. Standardization of microbiome studies for urolithiasis: an international consensus agreement. Nat Rev Urol 2021; 18: 303e11.
doi: 10.1038/s41585-021-00450-8
pmid: 33782583
|
[1] |
Victoria Jahrreiss, Christian Seitz, Fahad Quhal. Medical management of urolithiasis: Great efforts and limited progress[J]. Asian Journal of Urology, 2024, 11(2): 149-155. |
[2] |
Simin Yu, Linhu Liu, Ya Li, Liang Zhou, Jixiang Chen, Hong Li, Kunjie Wang. Flexible ureteroscopic treatment of kidney stones: How do the new laser systems change our concepts?[J]. Asian Journal of Urology, 2024, 11(2): 156-168. |
[3] |
Kyo Chul Koo, Abdulghafour Halawani, Victor K.F. Wong, Dirk Lange, Ben H. Chew. Monogenic features of urolithiasis: A comprehensive review[J]. Asian Journal of Urology, 2024, 11(2): 169-179. |
[4] |
Eric Edison, Giorgio Mazzon, Vimoshan Arumuham, Simon Choong. Prevention of complications in endourological management of stones: What are the basic measures needed before, during, and after interventions?[J]. Asian Journal of Urology, 2024, 11(2): 180-190. |
[5] |
Reza Falahatkar, Siavash Falahatkar, Mohammad Amin Khajavi Gaskarei, Masoomeh Afzalipoor, Ali Mojtahedi, Neda Aligolighasemabadi, Ahmad Deilami, Samaneh Mirzaei Dahka, Mohammad-Hossein Keivanlou, Alireza Jafari. The global, prevalence, and risk factors of postoperative fever after percutaneous nephrolithotomy: A systematic review and meta-analysis[J]. Asian Journal of Urology, 2024, 11(2): 253-260. |
[6] |
Andreia Cardoso, Aparício Coutinho, Gonçalo Neto, Sara Anacleto, Catarina Laranjo Tinoco, Nuno Morais, Mário Cerqueira-Alves, Estevão Lima, Paulo Mota. Percutaneous nephrostomy versus ureteral stent in hydronephrosis secondary to obstructive urolithiasis: A systematic review and meta-analysis[J]. Asian Journal of Urology, 2024, 11(2): 261-270. |
[7] |
U Phun Loo, Chun Hou Yong, Guan Chou Teh. Predictive factors for percutaneous nephrolithotomy bleeding risks[J]. Asian Journal of Urology, 2024, 11(1): 105-109. |
[8] |
Arman Tsaturyan, Angelis Peteinaris, Constantinos Adamou, Konstantinos Pagonis, Lusine Musheghyan, Anastasios Natsos, Theofanis Vrettos, Evangelos Liatsikos, Panagiotis Kallidonis. Percutaneous antegrade management of large proximal ureteral stones using non-papillary puncture[J]. Asian Journal of Urology, 2024, 11(1): 110-114. |
[9] |
Oktay Özman, Hacı M. Akgül, Cem Başataç, Önder Çınar, Eyüp B. Sancak, Cenk M. Yazıcı, Bülent Önal, Haluk Akpınar, on behalf of the RIRSearch Study Group . Multi-aspect analysis of ureteral access sheath usage in retrograde intrarenal surgery: A RIRSearch group study[J]. Asian Journal of Urology, 2024, 11(1): 80-85. |
[10] |
Rasim Güzel,Ümit Yildirim,Kemal Sarica. Contemporary minimal invasive surgical management of stones in children[J]. Asian Journal of Urology, 2023, 10(3): 239-245. |
[11] |
Giorgio Mazzon,Simon Choong,Antonio Celia. Stone-scoring systems for predicting complications in percutaneous nephrolithotomy: A systematic review of the literature[J]. Asian Journal of Urology, 2023, 10(3): 226-238. |
[12] |
Anastasios Anastasiadis,Antonios Koudonas,Georgios Langas,Stavros Tsiakaras,Dimitrios Memmos,Ioannis Mykoniatis,Evangelos N. Symeonidis,Dimitrios Tsiptsios,Eliophotos Savvides,Ioannis Vakalopoulos,Georgios Dimitriadis,Jean de la Rosette. Transforming urinary stone disease management by artificial intelligence-based methods: A comprehensive review[J]. Asian Journal of Urology, 2023, 10(3): 258-274. |
[13] |
Wei Zhu,Zhicong Huang,Guohua Zeng. Miniaturization in percutaneous nephrolithotomy: What is new?[J]. Asian Journal of Urology, 2023, 10(3): 275-280. |
[14] |
John Denstedt,Fernanda C. Gabrigna Berto. Thulium fiber laser lithotripsy: Is it living up to the hype?[J]. Asian Journal of Urology, 2023, 10(3): 289-297. |
[15] |
Qinghui Wu,Kesavan Esuvaranathan,Teck Kheng Lee,Soo Leong Foo,Jian Ping Chai,Edmund Chiong. A pilot clinical study of developing an External Assist Targeting Device for rapid and precise renal calyx access during percutaneous nephrolithotomy[J]. Asian Journal of Urology, 2023, 10(3): 364-371. |
|
|
|
|