|
|
LncRNA HCG18 promotes prostate cancer progression by regulating the miR-512-3p/HK-2 axis |
Yaru Zhua,Zhijing Wangb,Haopeng Lia,Zhen Renc,Tong Zia,Xin Qina,Wenhuizi Sund,Xi Chena,Gang Wua,*( )
|
aDepartment of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China bDepartment of Gastroenterology and Hepatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China cDepartment of Medicine, Dalian University of Technology, Dalian, China dDepartment of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China |
|
|
Abstract Objective:Long non-coding RNAs (lncRNAs) play an important role in tumor progression. Numerous studies show that lncRNAs are strongly associated with prostate cancer (PCa) progression. The aim of this study was to investigate the pathway through which lncRNA HCG18 regulates PCa progression by bioinformatics analysis and experiments. Methods:We compared HCG18 expression in PCa versus normal tissue and cells by data and cell lines, followed by comparing the changes in tumor cell proliferation, migration, and invasive ability after knockdown of HCG18. Then we searched for its downstream pathway by database and validated the pathway in vivo and in vitro. Results:HCG18 was highly expressed in PCa and has the ability to promote tumor proliferation, migration, and invasion; knockdown of HCG18 led to a decrease in the ability of cells to do so, which can be reversed by knockdown of miR-512-3p or overexpression of hexokinase 2. Conclusion:Our in vivo and in vitro experiments suggest that HCG18 can play a role in promoting PCa progression by blocking the inhibition of hexokinase 2 by miR-512-3p via sponge adsorption.
|
Received: 07 May 2023
Available online: 20 October 2024
|
Corresponding Authors:
*E-mail address: 2013wg_urologist@tongji.edu.cn (G. Wu).
|
|
|
|
LncRNA HCG18 is markedly increased in PCa and related to cells proliferation, migration, and invasion. (A) LncRNA HCG18 expression levels in PCa samples (n=499) and normal samples (n=52); p=0.039 (data source: ENCORI project); (B) Kaplan-Meier curves for overall survival of PCa patients with different HCG18 expression levels, p=0.024 (data source: GEPIA 2); (C) Relative expression levels of lncRNA HCG18 in different PCa cell lines by qRT-PCR; (D) Analysis of PC-3 and LNCaP cell viability using cell counting kit-8 solution (Dojindo, Tokyo, Japan); (E) Analysis of PC-3 and LNCaP cell migratory capacity using wound healing assay; (F) Analysis of PC-3 and LNCaP cell invasive capacity using transwell assay; (G) The statistical chart of healing experiments comparing cell migration capacity; (H) The statistical chart of transwell assay comparing cell invasion capacity. LncRNA, long non-coding RNA; PCa, prostate cancer; qRT-PCR, quantitative real-time polymerase chain reaction; FPKM, fragment per kilobase of transcript per million mapped reads; NC, negative control; sh-RNA, short hairpin RNA; OD, optical density. ? p<0.05; ?? p<0.01; ??? p<0.001. Scale bars, 100 μm. The databases we used are publicly available and can be reused without restriction through open licenses.
|
|
HK-2 promotes PCa progression and can be regulated by LncRNA HCG18. (A) Metabolic flux analysis of drug-sensitive (C4-2) and drug-resistant (C4-2R) cells; (B) Western blot comparison of HK-2 expression after knockdown of HCG18; (C) Western blot comparison of HK-2 expression after knockdown of HK-2; (D) Analysis of PC-3 and LNCaP cell viability using cell counting kit-8 solution (Dojindo, Tokyo, Japan); (E) Analysis of PC-3 and LNCaP cell migratory capacity using wound healing assay; (F) Analysis of PC-3 and LNCaP cell invasive capacity using transwell assay; (G) The statistical chart of healing experiments comparing cell migration capacity; (H) The statistical chart of transwell assay comparing cell invasion capacity. GAP, glyceraldehyde 3-phosphate; 3PG, 3-phosphoglycerate; DHAP, dihydroxyacetone phosphate; LncRNA, long non-coding RNA; PCa, prostate cancer; OD, optical density. ?p<0.05; ?? p<0.01; ??? p<0.001. Scale bars, 100 μm.
|
|
miR-512-3p correlates with HCG18 and HK-2. (A) Bioinformatic analysis for screening miRNAs; (B) HCG18 was confirmed to bind to miR-512-3p by RNA pull-down assay; (C) The binding site of HK-2 to miR-512-3p; (D) HCG18 was confirmed to bind to HK-2 by the luciferase reporter assay. ns, nonsignificant; oe, overexpress. ? p<0.05; ?? p<0.01.
|
|
miR-512-3p directly interacts with HCG18 and HK-2 and inhibits the progression of prostate cancer cells. (A) Analysis of PC-3 cell migratory capacity using wound healing assay; (B) Analysis of PC-3 cell invasive capacity using transwell assay; (C) Analysis of LNCaP cell migratory capacity using wound healing assay; (D) Analysis of LNCaP cell invasive capacity using transwell assay; (E) The statistical chart of healing experiments comparing cell migration capacity; (F) The statistical chart of transwell assay comparing cell invasion capacity; (G and H) Analysis of PC-3 and LNCaP cell viability using cell counting kit-8 solution (Dojindo, Tokyo, Japan). NC, negative control; OD, optical density. ? p<0.05; ?? p<0.01; ??? p<0.001. Scale bars, 100 μm.
|
|
LncRNA HCG18 promotes PCa progression via the LncRNA HCG18/miR-512-3p/HK-2 axis. (A) Analysis of PC-3 and LNCaP cell invasive capacity using the transwell assay; (B) Analysis of PC-3 and LNCaP cell viability using the cell counting kit-8 solution (Dojindo, Tokyo, Japan); (C) The statistical chart of the transwell assay comparing cell invasion capacity; (D) The statistical chart of healing experiments comparing cell migration capacity; (E) Analysis of PC-3 and LNCaP cell migratory capacity using the wound healing assay. OD, optical density; NC, negative control; PCa, prostate cancer; oe, overexpress. ? p<0.05; ?? p<0.01; ??? p<0.001. Scale bars, 100 μm.
|
|
Animal experiments of nude mice groups under different treatments. (A) Tumor visualization. (B) Tumor weight analysis. NC, negative control. ? p<0.05; ??? p<0.001.
|
[1] |
Rebello RJ, Oing C, Knudsen KE, Loeb S, Johnson DC, Reiter RE, et al. Prostate cancer. Nat Rev Dis Prim 2021; 7:9. https://doi.org/10.1038/s41572-020-00243-0.
|
[2] |
Huang J, Lin B, Li B. Anti-androgen receptor therapies in prostate cancer: a brief update and perspective. Front Oncol 2022; 12:865350. https://doi.org/10.3389/fonc.2022.865350.
|
[3] |
Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T. Emerging roles of long non-coding RNA in cancer. Cancer Sci 2018; 109:2093-100.
|
[4] |
Zhang Y, Tang L. The application of lncRNAs in cancer treatment and diagnosis. Recent Pat Anticancer Drug Discov 2018; 13:292-301.
doi: 10.2174/1574892813666180226121819
pmid: 29485010
|
[5] |
Camacho CV, Choudhari R, Gadad SS. Long noncoding RNAs and cancer, an overview. Steroids 2018; 133:93-5.
doi: S0039-128X(17)30244-1
pmid: 29317255
|
[6] |
Shang Z, Yu J, Sun L, Tian J, Zhu S, Zhang B, et al. LncRNA PCAT1 activates AKT and NF-kB signaling in castration-resistant prostate cancer by regulating the PHLPP/FKBP51/IKKa complex. Nucleic Acids Res 2019; 47:4211-25.
|
[7] |
Lang C, Yin C, Lin K, Li Y, Yang Q, Wu Z, et al. m6 A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med 2021; 11:e426. https://doi.org/10.1002/ctm2.426.
|
[8] |
Zheng Z, Lin K. LncRNA HCG18 promotes cell multiplication and metastasis by miR-148b/ETV5 regulation in osteosarcoma. Am J Transl Res 2021; 13:7783-93.
pmid: 34377255
|
[9] |
Zou Y, Sun Z, Sun S. LncRNA HCG18 contributes to the progression of hepatocellular carcinoma via miR-214-3p/CENPM axis. J Biochem 2020; 168:535-46.
doi: 10.1093/jb/mvaa073
pmid: 32663252
|
[10] |
Yang Y, Gong P, Yao D, Xue D, He X. LncRNA HCG18 promotes clear cell renal cell carcinoma progression by targetingmiR-152- 3p to upregulate RAB14. Cancer Manag Res 2021; 13:2287-94.
doi: 10.2147/CMAR.S298649
pmid: 33732021
|
[11] |
Chen Y, Chen Z, Mo J, Pang M, Chen Z, Feng F, et al. Identification of HCG18 and MCM3AP-AS 1 that associate with bone metastasis, poor prognosis and increased abundance of M2 macrophage infiltration in prostate cancer. Technol Cancer Res Treat 2021; 20:1533033821990064. https://doi.org/10.1177/1533033821990064.
|
[12] |
Fabris L, Ceder Y, Chinnaiyan AM, Jenster GW, Sorensen KD, Tomlins S, et al. The potential of micrornas as prostate cancer biomarkers. Eur Urol 2016; 70:312-22.
doi: 10.1016/j.eururo.2015.12.054
pmid: 26806656
|
[13] |
Wang K, Sun H, Sun T, Qu H, Xie Q, Lv H, et al. Long noncoding RNA AFAP1-AS 1 promotes proliferation and invasion in prostate cancer via targeting miR-512-3p. Gene 2020; 726:144169. https://doi.org/10.1016/j.gene.2019.144169.
|
[14] |
Duan WJ, Bi PD, Ma Y, Liu NQ, Zhen X. MiR-512-3p regulates malignant tumor behavior and multi-drug resistance in breast cancer cells via targeting Livin. Neoplasma 2020; 67:102-10.
doi: 10.4149/neo_2019_190106N18
pmid: 31777256
|
[15] |
Yang H, Zhang X, Zhu L, Yang Y, Yin X. YY1-induced lncRNA PART1 Enhanced resistance of ovarian cancer cells to cisplatin by regulating miR-512-3p/CHRAC1 axis. DNA Cell Biol 2021; 40:821-32.
|
[16] |
Rao Z, He Z, He Y, Guo Z, Kong D, Liu J. MicroRNA-512-3p is upregulated, and promotes proliferation and cell cycle progression, in prostate cancer cells. Mol Med Rep 2018; 17:586-93.
|
[17] |
Zhang B, Chan SH, Liu XQ, Shi YY, Dong ZX, Shao XR, et al. Targeting hexokinase 2 increases the sensitivity of oxaliplatin by Twist1 in colorectal cancer. J Cell Mol Med 2021; 25:8836-49.
doi: 10.1111/jcmm.16842
pmid: 34378321
|
[18] |
Sun X, Peng Y, Zhao J, Xie Z, Lei X, Tang G. Discovery and development of tumor glycolysis rate-limiting enzyme inhibitors. Bioorg Chem 2021; 112:104891. https://doi.org/10.1016/j.bioorg.2021.104891.
|
[19] |
Kozal K, Jó?wiak P, Krze?lak A. Contemporary perspectives on the Warburg effect inhibition in cancer therapy. Cancer Control 2021; 28:10732748211041243. https://doi.org/10.1177/10732748211041243.
|
[20] |
Garcia SN, Guedes RC, Marques MM. Unlocking the potential of HK2 in cancer metabolism and therapeutics. Curr Med Chem 2019; 26:7285-322.
doi: 10.2174/0929867326666181213092652
pmid: 30543165
|
[21] |
Shoshan-Barmatz V, Golan M. Mitochondrial VDAC1: function in cell life and death and a target for cancer therapy. Curr Med Chem 2012; 19:714-35.
pmid: 22204343
|
[22] |
Meng YM, Jiang X, Zhao X, Meng Q, Wu S, Chen Y, et al. Hexokinase 2-driven glycolysis in pericytes activates their contractility leading to tumor blood vessel abnormalities. Nat Commun 2021; 12:6011. https://doi.org/10.1038/s41467-021-26259-y.
|
[23] |
Deng Y, Lu J. Targeting hexokinase 2 in castration-resistant prostate cancer. Mol Cell Oncol 2015; 2:e974465. https://doi.org/10.4161/23723556.2014.974465.
|
[24] |
Duan BX, Geng XR, Wu YQ. lncRNA RNCR2 facilitates cell proliferation and epithelial-mesenchymal transition in melanoma through HK2-mediated Warburg effect via targeting miR-495-3p. Neoplasma 2021; 68:692-701.
|
[25] |
Zhang B, Chen J, Cui M, Jiang Y. LncRNA ZFAS1/miR-1271- 5p/HK2 promotes glioma development through regulating proliferation, migration, invasion and apoptosis. Neurochem Res 2020; 45:2828-39.
|
[26] |
Li X, Li Y, Bai S, Zhang J, Liu Z, Yang J. NR2F1-AS1/miR-140/HK2 axis regulates hypoxia-induced glycolysis and migration in hepatocellular carcinoma. Cancer Manag Res 2021; 13:427-37.
doi: 10.2147/CMAR.S266797
pmid: 33488124
|
[27] |
Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNAeceRNA, miRNAencRNA and proteineRNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42:D92-7. https://doi.org/10.1093/nar/gkt1248.
|
[28] |
Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020; 48:D127-31. https://doi.org/10.1093/nar/gkz757.
|
[29] |
Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS One 2018; 13:e0206239. https://doi.org/10.1371/journal.pone.0206239.
|
[30] |
Yang Y, Wang D, Miao YR, Wu X, Luo H, Cao W, et al. lncRNASNP v3: an updated database for functional variants in long non-coding RNAs. Nucleic Acids Res 2023; 51:D192-8. https://doi.org/10.1093/nar/gkac981.
|
[31] |
Chen J, Yu Y, Li H, Hu Q, Chen X, He Y, et al. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR- 143/HK2 axis in gallbladder cancer. Mol Cancer 2019; 18:33. https://doi.org/10.1186/s12943-019-0947-9.
|
[32] |
Yu T, Li G, Wang C, Gong G, Wang L, Li C, et al. MIR210HG regulates glycolysis, cell proliferation, and metastasis of pancreatic cancer cells through miR-125b-5p/HK2/PKM2 axis. RNA Biol 2021; 18:2513-30.
|
[33] |
Wang Z, Ran R, Zhang S, Zhou W, Lv J, Ma C, et al. The role of long non-coding RNA HCG18 in cancer. Clin Transl Oncol 2023; 25:611-9.
|
[34] |
Chen YP, Zhang DX, Cao Q, He CK. LncRNA HCG18 promotes osteosarcoma cells proliferation, migration, and invasion in by regulating miR-34a/RUNX2 pathway. Biochem Genet 2023; 61:1035-49.
|
[35] |
Li X, Li Y, Lian P, Lv Q, Liu F. Silencing lncRNA HCG18 regulates GPX4-inhibited ferroptosis by adsorbing miR-450b-5p to avert sorafenib resistance in hepatocellular carcinoma. Hum Exp Toxicol 2023; 42:9603271221142818. https://doi.org/10.1177/09603271221142818.
|
[36] |
Pan X, Guo J, Liu C, Pan Z, Yang Z, Yao X, et al. LncRNA HCG18 promotes osteosarcoma growth by enhanced aerobic glycolysis via the miR-365a-3p/PGK1 axis. Cell Mol Biol Lett 2022; 27:5. https://doi.org/10.1186/s11658-021-00304-6.
doi: 10.1186/s11658-021-00304-6
pmid: 34991445
|
[37] |
Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell 2013; 154:26-46.
doi: 10.1016/j.cell.2013.06.020
pmid: 23827673
|
[38] |
Yuan Z, Zhang Y, Chen P, Liu S, Xin L, Liu C. Long non-coding RNA HLA complex group 18 promotes gastric cancer progression by targeting microRNA-370-3p expression. J Pharm Pharmacol 2022; 74:250-8.
|
[39] |
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136:642-55.
doi: 10.1016/j.cell.2009.01.035
pmid: 19239886
|
[1] |
Jiacheng Liu, Xiaoyi Lin, Da Huang, Miao Zhang, Ao Liu, Xiaohao Ruan, Jingrong Jiang, Hai Huang, Lu Chen, Danfeng Xu. Diagnostic value comparison of the combination of prostate-specific membrane antigen-body PET/MR and the prostate health index with each alone in early diagnosis of prostate cancer[J]. Asian Journal of Urology, 2024, 11(4): 555-562. |
[2] |
Shinichiro Yamamoto, Daisuke Obinata, Kenichi Takayama, Daigo Funakoshi, Kyoko Fujiwara, Makoto Hara, Satoru Takahashi, Satoshi Inoue. Anillin actin-binding protein expression correlates with poor prognosis for prostate cancer patients[J]. Asian Journal of Urology, 2024, 11(4): 569-574. |
[3] |
Andrey Morozov, Leonid Chuvalov, Mark Taratkin, Mikhail Enikeev, Leonid Rapoport, Nirmish Singla, Eric Barret, Elena Poddubskaya, Maria Borodina, Georg Salomon, Juan Gomez Rivas, Dmitry Enikeev. A systematic review of cytoreductive prostatectomy outcomes and complications in oligometastatic disease[J]. Asian Journal of Urology, 2024, 11(2): 208-220. |
[4] |
Andrea Cocci, Marta Pezzoli, Fernando Bianco, Franco Blefari, Pierluigi Bove, Francois Cornud, Gaetano De Rienzo, Paolo Destefanis, Danilo Di Trapani, Alessandro Giacobbe, Luca Giovanessi, Antonino Laganà, Giovanni Lughezzani, Guglielmo Manenti, Gianluca Muto, Gianluigi Patelli, Novello Pinzi, Stefano Regusci, Giorgio I. Russo, Juan I.M. Salamanca, Matteo Salvi, Luigi Silvestri, Fabrizio Verweij, Eric Walser, Riccardo G. Bertolo, Valerio Iacovelli, Alessandro Bertaccini, Debora Marchiori, Hugo Davila, Pasquale Ditonno, Paolo Gontero, Gennaro Iapicca, Theo M De Reijke, Vito Ricapito, Pierluca Pellegrini, Andrea Minervini, Sergio Serni, Francesco Sessa. Transperineal laser ablation of the prostate as a treatment for benign prostatic hyperplasia and prostate cancer: The results of a Delphi consensus project[J]. Asian Journal of Urology, 2024, 11(2): 271-279. |
[5] |
Michele Marchioni, Giulia Primiceri, Alessandro Veccia, Marta Di Nicola, Umberto Carbonara, Fabio Crocerossa, Ugo Falagario, Ambra Rizzoli, Riccardo Autorino, Luigi Schips. Transurethral prostate surgery in prostate cancer patients: A population-based comparative analysis of complication and mortality rates[J]. Asian Journal of Urology, 2024, 11(1): 48-54. |
[6] |
Jonathan Noël, Daniel Stirt, Marcio Covas Moschovas, Sunil Reddy, Abdel Rahman Jaber, Marco Sandri, Seetharam Bhat, Travis Rogers, Subuhee Ahmed, Anya Mascarenhas, Ela Patel, Vipul Patel. Oncologic outcomes with and without amniotic membranes in robotic-assisted radical prostatectomy: A propensity score matched analysis[J]. Asian Journal of Urology, 2024, 11(1): 19-25. |
[7] |
Awad Elsid Osman, Sahar Alharbi, Atif Ali Ahmed, Asim Ali Elbagir. Single nucleotide polymorphism within chromosome 8q24 is associated with prostate cancer development in Saudi Arabia[J]. Asian Journal of Urology, 2024, 11(1): 26-32. |
[8] |
Anthony Franklin, Troy Gianduzzo, Boon Kua, David Wong, Louise McEwan, James Walters, Rachel Esler, Matthew J. Roberts, Geoff Coughlin, John W. Yaxley. The risk of prostate cancer on incidental finding of an avid prostate uptake on 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography for non-prostate cancer-related pathology: A single centre retrospective study[J]. Asian Journal of Urology, 2024, 11(1): 33-41. |
[9] |
Randi M. Pose, Sophie Knipper, Jonas Ekrutt, Mara Kölker, Pierre Tennstedt, Hans Heinzer, Derya Tilki, Florian Langer, Markus Graefen. Prevention of thromboembolic events after radical prostatectomy in patients with hereditary thrombophilia due to a factor V Leiden mutation by multidisciplinary coagulation management[J]. Asian Journal of Urology, 2024, 11(1): 42-47. |
[10] |
Enrico Checcucci, Alberto Piana, Gabriele Volpi, Pietro Piazzolla, Daniele Amparore, Sabrina De Cillis, Federico Piramide, Cecilia Gatti, Ilaria Stura, Enrico Bollito, Federica Massa, Michele Di Dio, Cristian Fiori, Francesco Porpiglia. Three-dimensional automatic artificial intelligence driven augmented-reality selective biopsy during nerve-sparing robot-assisted radical prostatectomy: A feasibility and accuracy study[J]. Asian Journal of Urology, 2023, 10(4): 407-415. |
[11] |
Roxana Ramos-Carpinteyro, Ethan L. Ferguson, Jaya S. Chavali, Albert Geskin, Jihad Kaouk. First 100 cases of transvesical single-port robotic radical prostatectomy[J]. Asian Journal of Urology, 2023, 10(4): 416-422. |
[12] |
Umberto Carbonara, Giuseppe Lippolis, Luciano Rella, Paolo Minafra, Giuseppe Guglielmi, Antonio Vitarelli, Giuseppe Lucarelli, Pasquale Ditonno. Intermediate-term oncological and functional outcomes in prostate cancer patients treated with perineal robot-assisted radical prostatectomy: A single center analysis[J]. Asian Journal of Urology, 2023, 10(4): 423-430. |
[13] |
Angelo Territo, Alessandro Uleri, Andrea Gallioli, Josep Maria Gaya, Paolo Verri, Giuseppe Basile, Alba Farré, Alejandra Bravo, Alessandro Tedde, Óscar Rodríguez Faba, Joan Palou, Alberto Breda. Robot-assisted oncologic pelvic surgery with Hugo™ robot-assisted surgery system: A single-center experience[J]. Asian Journal of Urology, 2023, 10(4): 461-466. |
[14] |
Thomas Whish-Wilson, Jo-Lynn Tan, William Cross, Lih-Ming Wong, Tom Sutherland. Prostate magnetic resonance imaging and the value of experience: An intrareader variability study[J]. Asian Journal of Urology, 2023, 10(4): 488-493. |
[15] |
Thitipat Hansomwong, Pat Saksirisampant, Sudhir Isharwal, Pubordee Aussavavirojekul, Varat Woranisarakul, Siros Jitpraphai, Sunai Leewansangtong, Tawatchai Taweemonkongsap, Sittiporn Srinualnad. Role of preoperative magnetic resonance imaging on the surgical outcomes of radical prostatectomy: Does preoperative tumor recognition reduce the positive surgical margin in a specific location? Experience from a Thailand prostate cancer specialized center[J]. Asian Journal of Urology, 2023, 10(4): 494-501. |
|
|
|
|