|
|
A systematic review of cytoreductive prostatectomy outcomes and complications in oligometastatic disease |
Andrey Morozova,Leonid Chuvalova,Mark Taratkina,b,Mikhail Enikeeva,Leonid Rapoporta,Nirmish Singlac,Eric Barretd,Elena Poddubskayae,Maria Borodinaf,Georg Salomong,Juan Gomez Rivash,Dmitry Enikeeva,i,*( )
|
aInstitute for Urology and Reproductive Health, Sechenov University, Moscow, Russia bYoung Academic Urologists, EAU, the Netherlands cDepartment of Urology, James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, USA dDepartment of Urology, Institut Mutualiste Montsouris, Paris, France eSechenov University, Moscow, Russia;f Hertsen Moscow Oncology Research Institute, Moscow, Russia fHertsen Moscow Oncology Research Institute, Moscow, Russia gMartini Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany hDepartment of Urology, Clinico San Carlos University Hospital, Madrid, Spain iDepartment of Urology, Medical University of Vienna, Vienna, Austria |
|
|
Abstract Objective: To analyze outcomes and complications of cytoreductive prostatectomy (CRP) for oligometastatic prostate cancer (PCa) in order to elucidate its role in this space. Methods: We performed a systematic literature search using three databases (Medline, Scopus, and Web of Science). The primary endpoints were oncologic outcomes. The secondary endpoints were complication rates and functional results. Results: In all studies, overall survival was better or at least comparable variable in the groups with CRP compared to no local treatment. The greatest benefit from CRP in 5-year overall survival in one study was 67.4% for CRP versus 22.5% for no local treatment. Cancer-specific survival (CSS) showed the same trend. Several authors found significant benefits from CSS in the CRP group: from 79% vs. 46% to 100% vs. 61%. CRP was a predictor of better CSS (hazard ratio 0.264, p=0.004). Positive surgical margin rates differed widely from 28.6% to 100.0%. Urinary continence in CRP versus RP for localized PCa was significantly lower (57.4% vs. 90.8%, p<0.0001). Severe incontinence occurred seldom (2.5%-18.6%). Total complication rates after CRP differed widely, from 7.0% to 43.6%. Rates of grades 1 and 2 events prevailed. Patients on ADT alone also showed a considerable number of complications varying from 5.9% to 57.7%. Conclusion: CRP improves medium-term cancer control in patients with oligometastatic PCa. The morbidity and complication rates of this surgery are comparable with other approaches, but postoperative incontinence rate is higher compared with RP for localized disease.
|
Received: 23 November 2021
Available online: 20 April 2024
|
Corresponding Authors:
* Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia. E-mail address: dvenikeev@gmail.com (D. Enikeev).
|
|
|
|
Preferred Reporting Items for Systematic reviews and Meta-Analyses statement. WoS, Web of Science.
|
Study | Study quality, LE | Imaging modality | Patient, n; age, yr | PSA, ng/mL | Gleason score before treatmenta | Mt characteristica | Stage cTa | Stage pTa | Complicationa | Functional outcomea | Oncological outcome | Culp et al., 2014 [34]; retrospective | 7, 2b | NR | ? RP -245; mean 72 ? BT -129; mean 72 ? NLT -7811; mean 72 | ? RPa -<10: 115 (46.9) -10-19: 50 (20.4) -20-29: 17 (6.9) ->30: 32 (13.1) -Unknown: 31 (12.7) ? BTa -≤19: 64 (49.6) -≥20: 55 (42.6) -Unknown: 10 (7.8) ? NLTa -<19: 1503 (19.2) -≥20: 5373 (68.8) -Unknown: 935 (12.0) | ? RP -7: 51 (20.8) -8: 187 (76.3) -Unknown: 7 (2.9) ? BT -7: 24 (18.6) -8: 94 (72.9) -Unknown: 11 (8.5) ? NLT -7: 439 (5.6) -8: 5673 (72.6) -Unknown: 1699 (21.8) | ? RP -M1a: 24 (9.8) -M1b: 150 (61.2) -M1c: 71 (29.0) ? BT -M1a: 16 (12.4) -M1b: 75 (58.1) -M1c: 38 (29.5) ? NLT -M1a: 463 (5.9) -M1b: 5469 (70.0) -M1c: 1879 (24.1) | ? RP -≤cT2: 130 (53.1) -≥cT3: 113 (46.1) -Unknown: 2 (0.8) ? BT -≤cT2: 91 (70.5) -≥cT3: 20 (15.5) -Unknown: 18 (14.0) ? NLT -≤cT2: 4318 (55.3) -≥cT3: 1562 (20.0) -Unknown: 1931 (24.7) | NR | NR | NR | ? RP -5-yr OS: 67.4% ? BT -5-yr OS: 52.6% ? NLT -5-yr OS: 22.5% | Heidenreich et al., 2015 [32]; case-control | 5, 3b | ?CT, bone scan, MRI if needed | ? RP -23; 61 (42-69)b ? ADT -38; 64 (47-83)b | ? RPb ?135.2 (3.5-150.4) ? ADTb ?105.9 (45-195) | ? RP -≤7: 5 (21.7) -8: 7 (30.4) -9: 7 (30.4) -10: 4 (17.4) ? ADT -≤7: 14 (37.8) -8: 11 (29.7) -9: 8 (21.6) -10: 4 (10.8) | Satkunasivam et al., 2015 [30]; retrospective | 7, 2c | NR | ? RP -47; (73±6)d ? IMRT: 88; (74.2±6.1)d ? RT -107; (76.4±6.3)d ? NLT -3827; (78.2±7.2)d | ? RPd: 181±263 ? IMRTd: 282±338 ? RTd: 531±369 ? NLTd: 590±380 | ? RP -≤6: 5 (11) -7: 22 (47) -≥8: 19 (40) -Unknown: 1 (2) ? IMRT -≤6: 10 (11) -7: 24 (27) -≥8: 43 (49) -Unknown: 11 (12) ? RT -≤6: 8 (7) -7: 22 (21) -≥8: 59 (55) -Unknown: 18 (17) ? NLT -≤6: 167 (4) -7: 569 (15) -≥8: 2042 (53) -Unknown: 1049 (27) | ? RP -M1a: 3 (7) -M1b: 26 (57) -M1c: 17 (37) ? IMRT -M1a: 3 (7) -M1b: 26 (57) -M1c: 17 (37) ? RT -M1a: 4 (4) -M1b: 72 (67) -M1c: 31 (29) ? NLT -M1a: 190 (5) -M1b: 2570 (70) -M1c: 922 (25) | ? RP -≤cT2: 21 (45) -≥cT3: 25 (53) -Unknown: 1 (2) ? IMRT -≤cT2: 63 (72) -≥cT3: 19 (22) -Unknown: 6 (7) ? RT -≤cT2: 59 (55) -≥cT3: 26 (24) -Unknown: 22 (21) ? NLT -≤cT2: 2121 (55) -≥cT3: 759 (20) -Unknown: 947 (25) | NR | NR | NR | ? RP -3-yr OS: 73% -3-yr CSS: 79% ? IMRT -3-yr OS: 72% -3-yr CSS: 82% ? RT -3-yr OS: 37% -3-yr CSS: 49% ? NLT -3-yr OS: 34% -3-yr CSS: 46% -Follow-up: median 20 mo | Sooriakumaran et al., 2016 [31]; retrospective | NA, 4 | NR | ? RP -106; 64.5 (58-70)e | ? RPe: 23.5 (8.1-55.1) | ? RPe -8.5 (8-9) | -M1a: 36 (34.0) -M1b (≤1 Mts): 20 (18.9) -M1b (2 Mts): 7 (6.6) -M1b (3 Mts): 9 (8.5) -M1b (Mts number not recorded): 34 (32.1) | -≤cT2: 67 (63.2) -≥cT3: 39 (36.8) | -≤pT2: 23 (21.7) -≥pT3: 83 (78.3) | -M1a: 7/36 (19.4) -M1b: 15/70 (21.4) -Total: 22/106 (20.8) | ? Incontinence in 3 mof -0-1 pad/day: 38 (64.4) -Mild (1-2 pads/d): 10 (16.9) -Severe (≥3 pads/d): 11 (18.6) | ? CSM: 11.3% (12 /106) ? PSM: 54.3% (57/105) ? Follow-up: median 22.8 mo | Jang et al., 2018 [23]; retrospective | 6, 3b | ?CT or MRI, and bone scan | ? RARP -38; 65 (62-69)e ? ADT: 41; 71 (67-76)e | ? RARPe: 39 (15-84.5) ? ADTe: 50 (23.8-162.8) | ? RARP -≤8: 26 (68.4) -≥9: 12 (31.6) ? ADT -≤8: 24 (58.5) -≥9: 17 (41.5) | -M1a-b: 79 (100) | ? RARP: -≤cT2: 5 (13.2) -≥cT3: 33 (86.8) ? ADT: -≤cT2: 2 (4.9) -≥cT3: 39 (95.1) | ? RARP: -≤pT2: 2 (5.2) -pT3: 31 (81.6) -pT4: 5 (13.2) ? ADT: NA | ? RARP (Clavien-Dindo score): -1: 3 (7.9); -2: 1 (2.6); -3a: 1 (2.6); -3b: 1 (2.6) -Total: 6 (15.7). ? ADT: 11 (26.8) | ?NR | ? PSMa: 30 (78.9) ? CRP is a significant predictor of PFS and CSS (PFS: HR 0.388, p=0.003; CSS: HR 0.264, p=0.004) ? Follow-up: median 40 mo | Poelaert et al., 2017 [35]; multicenter prospective | 5, 3b | ?CT, pelvic MRI, and bone scan | ? CRP -17; (64±8)d ? SoC -29; (72±10)d | ? CRPb ?16 (4.6-75); ? SoCb ?156 (5.2-3092) | ? CRP -≤7: 4 (24) -8: 5 (29) -≥9: 8 (47) ? SoC -≤7: 2 (6.7) -8: 8 (28) -≥9: 19 (66) | Steuber et al., 2017 [25]; prospective case-control | 5, 3b | Bone scan, CT, or MRI | ? CRP -43; median 65 ? ADT -40; median 70 | ? CRP: median 29.0 ? ADT: median 42.5 | ? CRP -7b: 13 (30.2) -8: 13 (30.2) -9: 15 (34.9) -10: 2 (4.7) ? ADT -≤7a: 1 (2.5) -7b: 5 (12.5) -8: 13 (32.5) -9: 16 (40.0) -10: 5 (12.5) | Leyh-Bannurah et al., 2017 [24]; retrospective | 8, 2b | NR | ? RP -313; 63 (58-67)e ? RT -161; 68 (60-73)e ? NLT -13 218; 72 (63-80)e | ? RP and RTa,g -≤20: 128 (74) ->20: 46 (26) ? ADTa -≤20: 864 (17) ->20: 4249 (83) | ? RP -6: 41 (13) -7: 105 (34) -8: 145 (46) -Unknown: 22 (7) ? RT -6: 30 (19) -7: 47 (29) -8: 72 (45) -Unknown: 12 (7.5) | ? RP -M1a: 35 (11) -M1b: 222 (71) -M1c: 56 (18) ? RT -M1a: 19 (12) -M1b: 103 (64) -M1c: 39 (24) ? ADT -M1a: 800 (6) -M1b: 9478 (72) -M1c: 2940 (22) | ? RP -≤cT2: 280 (89.5) -≥cT3: 33 (10.5) ? RT: -≤cT2: 137 (86.1) -≥cT3: 24 (14.9) ? ADT -≤cT2: 10597 (80.2) -≥cT3: 2621 (19.8) | NR | NR | NR | ? RP and RT (n=474): lower CSM (HR=0.40, 95% CI 0.32-0.50) vs. NLT (n=1896)h ? RP (n=161): lower CSM (HR=0.59, 95% CI 0.35-0.99) vs. RT (n=161) | Kim et al., 2018 [29]; retrospective, cohort, multicenter | 7, 2c | NR | ? CRP (metastatic PCa) -68; 64.3 (33-80)c ? RP ( localized PCa) -598; 63.5 (39-82)c | ? CRP: 10.10 (0.01-352.00)c ? RP: 6.50 (0.12-104.00)c | ? CRPi -≤7: 25 (37.9) -8: 19 (28.8) -9: 20 (30.3) -10: 2 (3.0) ? RPi -≤7: 471 (80.1) -8: 73 (12.4) -9: 39 (6.6) -10: 5 (0.9) | ? CRPi -M1: 23 (33.8) -N1: 45 (66.2) -N1M0: 45 (66.2) -N0M1: 20 (29.4) -N1M1: 3 (4.4) ? RP: NA | ? CRPi -cT2: 17 (25) -cT3: 42 (61.8) -cT4: 9 (13.2) ? RPi -cT2: 525 (88.7) -cT3: 62 (10.5) -cT4: 5 (0.8) | ? CRPi ?≤pT2: 15 (23.4) ?pT3: 39 (60.9) ?pT4: 10 (15.6) ? RPi ≤pT2: 396 (66.9) pT3: 187 (31.6) ?pT4: 9 (1.5) | ? CRP (Clavien-Dindo score) -0: 62 (91.2) -1: 2 (2.9) -2: 1 (1.5) -3а: 0 -3b: 3 (4.4) -4≥: 0 -Total: 6 (8.8) ? RP (Clavien-Dindo score) -0: 563 (94.2) -1: 19 (3.2) -2: 3 (0.5) -3а: 5 (0.8) -3b: 6 (1) -4а: 2 (0.3) -4b≥: 0 -Total: 35 (5.9) | ? CRP -Urinary continence significantly lower (57.4% vs. 90.8%, p<0.0001) | ? CRP -PSMa: 43 (63.2) ? RP -PSMa: 112 (19) | Heidenreich et al., 2018 [33]; retrospective, multicenter | NA, 4 | ?CT, bone scan, or MRI if needed | ? RP -113; 60.2 (42-69)e | ? 34.2 (0.1-357.4)c | ? RP -6: 4 (3.5) -7: 18 (15.9) -8: 42 (37.2) -9: 40 (35.4) -10: 9 (7.9) | ? Low volume (≤3 Mts) -88 (77.9) ? High volume (≥4 Mts) -25 (22.1) | NR | -pT2: 21 (18.6) -pT3a/b: 76 (67.3) -pT4a: 16 (14.2) | ? Clavien-Dindo score -1: 13 (11.5) -2: 14 (12.4) -3a: 5 (4.4) -3b: 6 (5.3) -4-5: 0 -Total: 38 (33.6) | ? Incontinence within 12 mo -No: 77 (68.1) -Mild (1-2 pads/day): 20 (17.7) -Severe (>2 pads/day): 16 (14.2) | ? 3-yr OS: 87.6% ? 5-yr OS: 79.6% ? CRFS: 72.3 mo ? Symptomatic local relapse: 0 ? BRFS: -PSA <8.0 ng/mL: 78% -PSA >8.0 ng/mL: 32% ? PSMa: 42 (37.2) ? Follow-upc: 53.6 (13-96) mo | Lan et al., 2019 [27]; retrospective | 6, 3b | CT, bone scan, or MRI if needed | ? CRP -35; (67.8±7.2)d ? ADT -76; (71.2±7.7)d | ? CRPd: ?90.4±152.8 ? ADTd: ?502.9±806 | ? CRP -≤7: 27 (77.2) -8: 6 (17.1) -≥9: 2 (5.7) ? ADT -≤7: 27 (34.6) -8: 27 (34.6) -≥9: 23 (29.5) -Unknown: 1 (1.3) | ? Bone Mts (≤5 Mts) -М1b: 111 (100) -Excluded: visceral metastases | ? CRP -≤cT2: 24 (68.6) -≥cT3: 8 (22.9) -Unknown: 3 (8.6) ? ADT -≤cT2: 14 (18.4) -≥cT3: 32 (42.1) -Unknown: 30 (39.5) | ? CRP -pT2: 15 (42.9) -pT3: 16 (45.7) -pT4: 4 (11.4) ? ADT: NA | NR | NR | ? CRP -3-yr PFS: 42.7% -5-yr PFS: 19% -3-yr CSS: 90.8% -5-yr CSS: 63.6% -CSMa: 4 (11.4) -PSMa: 10 (28.6) -CPFSe: 35 (10-49) mo -Follow-up: mean 36.9 mo ? ADT -3-yr PFS: 27% -5-yr PFS: 21% -3-yr CSS: 87.9% -5-yr CSS: 74.9% -CSM: 11 (14.5%) -PFSe: 21 (10-49) mo; -Follow-up: mean 39.2 mo | Yuh et al., 2019 [26]; prospective | NA, 4 | Bone scan, CT, or MRI | ? RP -32; 64 (50-73)b | ? 75.5 (5-418)c | -≤7: 11 (34.4) -8: 20 (62.5) -Not available result: 1 (3.1) | -N1M0: 7 (21.9) -N1M1a: 3 (9.4) -N1M1b: 7 (21.9) -N0M1a: 0 -N0M1b: 15 (46.9) | -cT1: 6 (18.8) -cT2: 13 (40.6) -cT3: 13 (40.6) | -pT2: 6 (18.8) -pT3a: 6 (18.8) -pT3b: 20 (62.5) | ? Clavien-Dindo score -1: 5 (15.6) -2: 3 (9.3) -3: 0 -4: 1 (3.1) -5: 1 (3.1) -Total: 10 (31.3) | ? Incontinence within 6 mo -No: 16 (50) ? Mean score decreased from 11.5 preoperatively to 4.7 following surgery (p= 0.0018) | ? PSMa: 21 (65.6%) | Simforoosh et al., 2019 [28]; prospective | 7, 3b | CT, MRI, bone scan, or PET-PSMA if needed | ? CRP -26; (61.5±7.7)d ? NLT -23; (64.6±6.2)d | ? CRPd: 108±73 ? NLTd: 84±61 | ? CRP -≤7: 1 (3.8) -8: 2 (7.6) -9: 18 (69.2) -10: 5 (19.2) ? NLT: NR | ? CRP -Low volume bone (≤5 Mts): 10 (38.5) -High volume (≥6 Mts): 16 (61.5) ? NLT -Low volume bone (≤5 Mts): 9 (39.1) -High volume (≥6 Mts): 14 (60.9) | NR | ? RP -pT2b: 1 (3.8) -pT2c: 1 (3.8) -pT3a: 1 (3.8) -pT3b: 22 (84.6) -pT4: 1 (3.8) ? NLT: NA | ? CRP (Clavien-Dindo score) -1-3: 7 (26.9) ? NLT: 9 (38.9) patients required intervention | ? CRP ( incontinence)j -No: 22 (84.6) -Stress: 3 (11.5) | ? CRP -CSMa: 6 (23.1) -BRa: 9 (34.6) -PSMa: 26 (100) -Follow-up: median 19.2 mo ? NLT -CSMa: 8 (34.8) -BRa: 17 (73.9) -Follow-up: median 22.8 mo | Knipper et al., 2020 [36]; retrospective | 6, 2c | Bone scan, CT, or MRI | ? RP -78; 64 (59-69)e ? RT -410; 68 (63-73)e, from STAMPEDE arm H (low metastatic burden) | ? RP: 35 (13-55)e ? RT: 55 (23-138)e | ? RP -7: 18 (23) -8-9: 60 (77) ? RT -7: 84 (20) -8-9: 308 (75) -Unknown: 18 (4) | ? RP -M1b: 78 (100) ? RT -M1a: 82 (20) -M1b: 311 (76) -M1c: 17 (4) | ? RP -≤cT2: 58 (74) -≥cT3: 16 (21) -Tx: 4 (5) ? RT -≤cT2: 39 (10) -≥cT3: 355 (87) -Tx: 16 (4) | ? RP -pT2: 6 (8) -pT3: 67 (86) -pT4: 5 (6). ? RT: NA | ? RP (Clavien-Dindo score) -1: 6 (8) -2: 12 (15) -3a: 6 (8) -3b: 8 (10) -4: 2 (3) -Totalk: 34 (43.6) | ? RP (continence at 1-yr follow-up) -0-1 pad/day): 28 (36) -1 pad/day): 10 (13) -Unknown: 40 (51) | ? RP (3-yr follow-up) -OS: 91% -PFS: 63% -MPFS: 63% -CSS: 92% ? RT (3-yr follow-up) -OS: 81% -PFS: 63% -MPFS: 67% -CSS: 86% |
|
Outcomes and complications of cytoreductive prostatectomy and other treatment approaches in patients with oligometastatic PCa.
|
[1] |
Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev 2018; 32:1105e40.
doi: 10.1101/gad.315739.118
|
[2] |
James ND, Spears MR, Clarke NW, Dearnaley DP, De Bono JS, Gale J, et al. Survival with newly diagnosed metastatic prostate cancer in the “docetaxel era”: data from 917 patients in the control arm of the STAMPEDE trial (MRC PR08, CRUK/06/019). Eur Urol 2015; 67:1028e38.
doi: 10.1016/j.eururo.2014.09.032
|
[3] |
Kyriakopoulos CE, Chen YH, Carducci MA, Liu G, Jarrard DF, Hahn NM, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: long-term survival analysis of the randomized phase III E3805 CHAARTED trial. J Clin Oncol 2018; 36:1080e7.
doi: 10.1200/JCO.2017.75.3657
pmid: 29384722
|
[4] |
Gómez Rivas J, Carrion DM, Alvarez-Maestro M, Cathelineau X, Sanchez-Salas R, Di Lorenzo G, et al. Bone-targeted therapy in castration-resistant prostate cancer: where do we stand? Minerva Urol Nefrol 2019; 71:445e56.
doi: 10.23736/S0393-2249.19.03420-9
pmid: 31353876
|
[5] |
Hong MK, Kong J, Namdarian B, Longano A, Grummet J, Hovens CM, et al. Paraneoplastic syndromes in prostate cancer. Nat Rev Urol 2010; 7:681e92.
doi: 10.1038/nrurol.2010.186
pmid: 21139643
|
[6] |
Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol 1995; 13:8e10.
doi: 10.1200/JCO.1995.13.1.8
pmid: 7799047
|
[7] |
Weichselbaum RR, Hellman S. Oligometastases revisited. Nat Rev Clin Oncol 2011; 8:378e82.
doi: 10.1038/nrclinonc.2011.44
pmid: 21423255
|
[8] |
Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2:563e72.
doi: 10.1038/nrc865
pmid: 12154349
|
[9] |
Tosoian JJ, Gorin MA, Ross AE, Pienta KJ, Tran PT, Schaeffer EM. Oligometastatic prostate cancer: definitions, clinical outcomes, and treatment considerations. Nat Rev Urol 2017; 14:15e25.
doi: 10.1038/nrurol.2016.175
pmid: 27725639
|
[10] |
Pagliarulo V, Bracarda S, Eisenberger MA, Mottet N, Schr?der FH, Sternberg CN, et al. Contemporary role of androgen deprivation therapy for prostate cancer. Eur Urol 2012; 61:11e25.
|
[11] |
Aus G, Hugosson J, Norlén L. Need for hospital care and palliative treatment for prostate cancer treated with noncurative intent. J Urol 1995; 154:466e9.
doi: 10.1097/00005392-199508000-00034
pmid: 7541865
|
[12] |
Won ACM, Gurney H, Marx G, De Souza P, Patel MI. Primary treatment of the prostate improves local palliation in men who ultimately develop castrate-resistant prostate cancer. BJU Int 2013; 112:E250e5. https://doi.org/10.1111/bju.12169.
|
[13] |
Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014; 371:1028e38.
doi: 10.1056/NEJMoa1315815
|
[14] |
Boeri L, Sharma V, Karnes RJ. Radiotherapy for newly diagnosed oligometastatic prostate cancer. Lancet 2020; 392:2327e8.
doi: 10.1016/S0140-6736(18)32598-4
|
[15] |
Parker CC, James ND, Brawley CD, Clarke NW, Hoyle AP, Ali A, et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet 2018; 392: 2353e66.
doi: S0140-6736(18)32486-3
pmid: 30355464
|
[16] |
Glehen O, Mohamed F, Gilly FN. Peritoneal carcinomatosis from digestive tract cancer: new management by cytoreductive surgery and intraperitoneal chemohyperthermia. Lancet Oncol 2004; 5:219e28.
doi: 10.1016/S1470-2045(04)01425-1
pmid: 15050953
|
[17] |
Roviello F, Caruso S, Marrelli D, Pedrazzani C, Neri A, De Stefano A, et al. Treatment of peritoneal carcinomatosis with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. G Chir 2011; 32:211e33.
|
[18] |
Heng DYC, Wells JC, Rini BI, Beuselinck B, Lee JL, Knox JJ, et al. Cytoreductive nephrectomy in patients with synchronous metastases from renal cell carcinoma: results from the International Metastatic Renal Cell Carcinoma Database Consortium. Eur Urol 2014; 66:704e10.
doi: 10.1016/j.eururo.2014.05.034
pmid: 24931622
|
[19] |
Choueiri TK, Xie W, Kollmannsberger C, North S, Knox JJ, Lampard JG, et al. The impact of cytoreductive nephrectomy on survival of patients with metastatic renal cell carcinoma receiving vascular endothelial growth factor targeted therapy. J Urol 2011; 185:60e6.
doi: 10.1016/j.juro.2010.09.012
pmid: 21074201
|
[20] |
Swanson G, Thompson I, Basler J, Crawford D. Metastatic prostate cancerddoes treatment of the primary tumor matter? J Urol 2006; 176:1292e8.
doi: 10.1016/j.juro.2006.06.069
|
[21] |
Wells GA, Shea B, O’Connell D. The Newcastle Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. [Accessed 06 August 2021].
|
[22] |
Phillips B, Ball C, Sackett D, Badenoch D, Straus S, Haynes B, et al. Levels of evidence. Oxford Centre for evidence-based medicine. Available from: https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidencemarch-2009/. [Accessed 20 August 2020].
|
[23] |
Jang WS, Kim MS, Jeong WS, Chang KD, Cho KS, Ham WS, et al. Does robot-assisted radical prostatectomy benefit patients with prostate cancer and bone oligometastases? BJU Int 2018; 121:225e31.
doi: 10.1111/bju.13992
pmid: 28834084
|
[24] |
Leyh-Bannurah SR, Gazdovich S, Bud?us L, Zaffuto E, Briganti A, Abdollah F, et al. Local therapy improves survival in metastatic prostate cancer. Eur Urol 2017; 72:118e24.
doi: S0302-2838(17)30231-2
pmid: 28385454
|
[25] |
Steuber T, Berg KD, R?der MA, Brasso K, Iversen P, Huland H, et al. Does cytoreductive prostatectomy really have an impact on prognosis in prostate cancer patients with low-volume bone metastasis? Results from a prospective case-control study. Eur Urol Focus 2017; 3:646e9.
doi: S2405-4569(17)30171-2
pmid: 28753877
|
[26] |
Yuh BE, Kwon YS, Shinder BM, Singer EA, Jang TL, Kim S, et al. Results of Phase 1 study on cytoreductive radical prostatectomy in men with newly diagnosed metastatic prostate cancer. Prostate Int 2019; 7:102e7.
doi: 10.1016/j.prnil.2018.10.002
|
[27] |
Lan T, Chen Y, Su QJ, Ye JJ. Oncological outcome of cytoreductive radical prostatectomy in prostate cancer patients with bone oligometastases. Urology 2019; 131:166e75.
doi: S0090-4295(19)30507-2
pmid: 31181273
|
[28] |
Simforoosh N, Dadpour M, Mofid B. Cytoreductive and palliative radical prostatectomy, extended lymphadenectomy and bilateral orchiectomy in advanced prostate cancer with oligo and widespread bone metastases: result of a feasibility, our initial experience. Urol J 2019; 16:162e7.
doi: 10.22037/uj.v0i0.4783
pmid: 30393838
|
[29] |
Kim DK, Parihar JS, Kwon YS, Kim S, Shinder B, Lee N, et al. Risk of complications and urinary incontinence following cytoreductive prostatectomy: a multi-institutional study. Asian J Androl 2018; 20:9e14.
doi: 10.4103/1008-682X.196852
pmid: 28440262
|
[30] |
Satkunasivam R, Kim AE, Desai M, Nguyen MM, Quinn DI, Ballas L, et al. Radical prostatectomy or external beam radiation therapy vs. no local therapy for survival benefit in metastatic prostate cancer: a SEER-medicare analysis. J Urol 2015; 194:378e85.
doi: 10.1016/j.juro.2015.02.084
pmid: 25711194
|
[31] |
Sooriakumaran P, Karnes J, Stief C, Copsey B, Montorsi F, Hammerer P, et al. A multi-institutional analysis of perioperative outcomes in 106 men who underwent radical prostatectomy for distant metastatic prostate cancer at presentation. Eur Urol 2016; 69:788e94.
doi: 10.1016/j.eururo.2015.05.023
pmid: 26038098
|
[32] |
Heidenreich A, Pfister D, Porres D. Cytoreductive radical prostatectomy in patients with prostate cancer and low volume skeletal metastases: results of a feasibility and casecontrol study. J Urol 2015; 193:832e8.
doi: 10.1016/j.juro.2014.09.089
pmid: 25254935
|
[33] |
Heidenreich A, Fossati N, Pfister D, Suardi N, Montorsi F, Shariat S, et al. Cytoreductive radical prostatectomy in men with prostate cancer and skeletal metastases. Eur Urol Oncol 2018; 1:46e53.
doi: S2588-9311(18)30006-3
pmid: 31100228
|
[34] |
Culp SH, Schellhammer PF, Williams MB. Might men diagnosed with metastatic prostate cancer benefit from definitive treatment of the primary tumor? A SEER-based study. Eur Urol 2014; 65:1058e66.
doi: 10.1016/j.eururo.2013.11.012
pmid: 24290503
|
[35] |
Poelaert F, Verbaeys C, Rappe B, Kimpe B, Billiet I, Plancke H, et al. Cytoreductive prostatectomy for metastatic prostate cancer: first lessons learned from the multicentric prospective local treatment of metastatic prostate cancer (LoMP) trial. Urology 2017; 106:146e52.
doi: S0090-4295(17)30372-2
pmid: 28435034
|
[36] |
Knipper S, Beyer B, Mandel P, Tennstedt P, Tilki D, Steuber T, et al. Outcome of patients with newly diagnosed prostate cancer with low metastatic burden treated with radical prostatectomy: a comparison to STAMPEDE arm H. World J Urol 2020; 38:1459e64.
doi: 10.1007/s00345-019-02950-0
pmid: 31511970
|
[37] |
Fidler IJ. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer 2003; 3:453e8.
doi: 10.1038/nrc1098
|
[38] |
Kendal WS. Oligometastasis as a predictor for occult disease. Math Biosci 2014; 251:1e10.
doi: 10.1016/j.mbs.2014.02.006
pmid: 24560886
|
[39] |
Zhang L, Wu B, Zha Z, Zhao H, Jiang Y, Yuan J. Positive surgical margin is associated with biochemical recurrence risk following radical prostatectomy: a meta-analysis from highquality retrospective cohort studies. World J Surg Oncol 2018; 16:124. https://doi.org/10.1186/s12957-018-1433-3.
doi: 10.1186/s12957-018-1433-3
|
[40] |
Kv?le R, Myklebust T?, Foss? SD, Aas K, Ekanger C, Helle SI, et al. Impact of positive surgical margins on secondary treatment, palliative radiotherapy and prostate cancerspecific mortality. A population-based study of 13 198 patients. Prostate 2019;79: 1852e60.
|
[41] |
Boevé LMS, Hulshof MCCM, Vis AN, Zwinderman AH, Twisk JWR, Witjes WPJ, et al. Effect on survival of androgen deprivation therapy alone compared to androgen deprivation therapy combined with concurrent radiation therapy to the prostate in patients with primary bone metastatic prostate cancer in a prospective randomised clinical trial. Eur Urol 2019; 75:410e8.
doi: 10.1016/j.eururo.2018.09.008
|
[42] |
Fahmy O, Khairul-Asri MG, Hadi SHSM, Gakis G, Stenzl A. The role of radical prostatectomy and radiotherapy in treatment of locally advanced prostate cancer: a systematic review and meta-analysis. Urol Int 2017; 99:249e56.
doi: 10.1159/000478789
pmid: 28675891
|
[43] |
Ranasinghe W, Chapin BF, Kim IY, Sooriakumaran P, Lawrentschuk N. The cytoreductive prostatectomy in metastatic prostate cancer: what the individual trials are hoping to answer. BJU Int 2020; 125:792e800.
doi: 10.1111/bju.15055
pmid: 32176456
|
[44] |
Cheng B, Ye S, Bai P. The efficacy of cytoreductive surgery for oligometastatic prostate cancer: a meta-analysis. World J Surg Oncol 2021; 19:160. https://wjso.biomedcentral.com/articles/10.1186/s12957-021-02265-8.
doi: 10.1186/s12957-021-02265-8
pmid: 34051809
|
[45] |
Becker JA, Berg KD, R?der MA, Brasso K, Iversen P. Cytoreductive prostatectomy in metastatic prostate cancer: a systematic review. Scand J Urol 2018 2; 52:1e7.
doi: 10.1080/21681805.2017.1363816
pmid: 28818014
|
[46] |
Burdett S, Boevé LM, Ingleby FC, Fisher DJ, Rydzewska LH, Vale CL, et al. Prostate radiotherapy for metastatic hormonesensitive prostate cancer: a STOPCAP systematic review and meta-analysis. Eur Urol 2019; 76:115e24.
doi: S0302-2838(19)30111-3
pmid: 30826218
|
[47] |
Reyes DK, Pienta KJ. The biology and treatment of oligometastatic cancer. Oncotarget 2015; 6:8491e524.
doi: 10.18632/oncotarget.3455
pmid: 25940699
|
[1] |
Andrea Cocci,Marta Pezzoli,Fernando Bianco,Franco Blefari,Pierluigi Bove,Francois Cornud,Gaetano De Rienzo,Paolo Destefanis,Danilo Di Trapani,Alessandro Giacobbe,Luca Giovanessi,Antonino Laganà,Giovanni Lughezzani,Guglielmo Manenti,Gianluca Muto,Gianluigi Patelli,Novello Pinzi,Stefano Regusci,Giorgio I. Russo,Juan I.M. Salamanca,Matteo Salvi,Luigi Silvestri,Fabrizio Verweij,Eric Walser,Riccardo G. Bertolo,Valerio Iacovelli,Alessandro Bertaccini,Debora Marchiori,Hugo Davila,Pasquale Ditonno,Paolo Gontero,Gennaro Iapicca,Theo M De Reijke,Vito Ricapito,Pierluca Pellegrini,Andrea Minervini,Sergio Serni,Francesco Sessa. Transperineal laser ablation of the prostate as a treatment for benign prostatic hyperplasia and prostate cancer: The results of a Delphi consensus project[J]. Asian Journal of Urology, 2024, 11(2): 271-279. |
[2] |
Michele Marchioni, Giulia Primiceri, Alessandro Veccia, Marta Di Nicola, Umberto Carbonara, Fabio Crocerossa, Ugo Falagario, Ambra Rizzoli, Riccardo Autorino, Luigi Schips. Transurethral prostate surgery in prostate cancer patients: A population-based comparative analysis of complication and mortality rates[J]. Asian Journal of Urology, 2024, 11(1): 48-54. |
[3] |
Jonathan Noël, Daniel Stirt, Marcio Covas Moschovas, Sunil Reddy, Abdel Rahman Jaber, Marco Sandri, Seetharam Bhat, Travis Rogers, Subuhee Ahmed, Anya Mascarenhas, Ela Patel, Vipul Patel. Oncologic outcomes with and without amniotic membranes in robotic-assisted radical prostatectomy: A propensity score matched analysis[J]. Asian Journal of Urology, 2024, 11(1): 19-25. |
[4] |
Awad Elsid Osman, Sahar Alharbi, Atif Ali Ahmed, Asim Ali Elbagir. Single nucleotide polymorphism within chromosome 8q24 is associated with prostate cancer development in Saudi Arabia[J]. Asian Journal of Urology, 2024, 11(1): 26-32. |
[5] |
Anthony Franklin, Troy Gianduzzo, Boon Kua, David Wong, Louise McEwan, James Walters, Rachel Esler, Matthew J. Roberts, Geoff Coughlin, John W. Yaxley. The risk of prostate cancer on incidental finding of an avid prostate uptake on 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography for non-prostate cancer-related pathology: A single centre retrospective study[J]. Asian Journal of Urology, 2024, 11(1): 33-41. |
[6] |
Randi M. Pose, Sophie Knipper, Jonas Ekrutt, Mara Kölker, Pierre Tennstedt, Hans Heinzer, Derya Tilki, Florian Langer, Markus Graefen. Prevention of thromboembolic events after radical prostatectomy in patients with hereditary thrombophilia due to a factor V Leiden mutation by multidisciplinary coagulation management[J]. Asian Journal of Urology, 2024, 11(1): 42-47. |
[7] |
Enrico Checcucci, Alberto Piana, Gabriele Volpi, Pietro Piazzolla, Daniele Amparore, Sabrina De Cillis, Federico Piramide, Cecilia Gatti, Ilaria Stura, Enrico Bollito, Federica Massa, Michele Di Dio, Cristian Fiori, Francesco Porpiglia. Three-dimensional automatic artificial intelligence driven augmented-reality selective biopsy during nerve-sparing robot-assisted radical prostatectomy: A feasibility and accuracy study[J]. Asian Journal of Urology, 2023, 10(4): 407-415. |
[8] |
Roxana Ramos-Carpinteyro, Ethan L. Ferguson, Jaya S. Chavali, Albert Geskin, Jihad Kaouk. First 100 cases of transvesical single-port robotic radical prostatectomy[J]. Asian Journal of Urology, 2023, 10(4): 416-422. |
[9] |
Umberto Carbonara, Giuseppe Lippolis, Luciano Rella, Paolo Minafra, Giuseppe Guglielmi, Antonio Vitarelli, Giuseppe Lucarelli, Pasquale Ditonno. Intermediate-term oncological and functional outcomes in prostate cancer patients treated with perineal robot-assisted radical prostatectomy: A single center analysis[J]. Asian Journal of Urology, 2023, 10(4): 423-430. |
[10] |
Angelo Territo, Alessandro Uleri, Andrea Gallioli, Josep Maria Gaya, Paolo Verri, Giuseppe Basile, Alba Farré, Alejandra Bravo, Alessandro Tedde, Óscar Rodríguez Faba, Joan Palou, Alberto Breda. Robot-assisted oncologic pelvic surgery with Hugo™ robot-assisted surgery system: A single-center experience[J]. Asian Journal of Urology, 2023, 10(4): 461-466. |
[11] |
Thomas Whish-Wilson, Jo-Lynn Tan, William Cross, Lih-Ming Wong, Tom Sutherland. Prostate magnetic resonance imaging and the value of experience: An intrareader variability study[J]. Asian Journal of Urology, 2023, 10(4): 488-493. |
[12] |
Thitipat Hansomwong, Pat Saksirisampant, Sudhir Isharwal, Pubordee Aussavavirojekul, Varat Woranisarakul, Siros Jitpraphai, Sunai Leewansangtong, Tawatchai Taweemonkongsap, Sittiporn Srinualnad. Role of preoperative magnetic resonance imaging on the surgical outcomes of radical prostatectomy: Does preoperative tumor recognition reduce the positive surgical margin in a specific location? Experience from a Thailand prostate cancer specialized center[J]. Asian Journal of Urology, 2023, 10(4): 494-501. |
[13] |
Kerri R. Beckmann, Michael E. O'Callaghan, Andrew D. Vincent, Kim L. Moretti, Nicholas R. Brook. Clinical outcomes for men with positive surgical margins after radical prostatectomy—results from the South Australian Prostate Cancer Clinical Outcomes Collaborative community-based registry[J]. Asian Journal of Urology, 2023, 10(4): 502-511. |
[14] |
Wei He,Yutian Xiao,Shi Yan,Yasheng Zhu,Shancheng Ren. Cell-free DNA in the management of prostate cancer: Current status and future prospective[J]. Asian Journal of Urology, 2023, 10(3): 298-316. |
[15] |
Shulin Wu,Sharron X. Lin,Kristine M. Cornejo,Rory K. Crotty,Michael L. Blute,Douglas M. Dahl,Chin-Lee Wu. Clinicopathological and oncological significance of persistent prostate-specific antigen after radical prostatectomy: A systematic review and meta-analysis[J]. Asian Journal of Urology, 2023, 10(3): 317-328. |
|
|
|
|