|
|
Role of preoperative magnetic resonance imaging on the surgical outcomes of radical prostatectomy: Does preoperative tumor recognition reduce the positive surgical margin in a specific location? Experience from a Thailand prostate cancer specialized center |
Thitipat Hansomwonga,*( ),Pat Saksirisampantb,Sudhir Isharwalc,Pubordee Aussavavirojekula,Varat Woranisarakula,Siros Jitpraphaia,Sunai Leewansangtonga,Tawatchai Taweemonkongsapa,Sittiporn Srinualnada
|
aDivision of Urology, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand bDivision of Urology, Department of Surgery, Somdech Phra Pinklao Hospital, Naval Medical Department, Royal Thai Navy, Bangkok, Thailand cDepartment of Urology, Oregon Health and Science University, Portland, OR, United States |
|
|
Abstract Objective: Multiparametric magnetic resonance imaging (MRI) has become the standard of care for the diagnosis of prostate cancer patients. This study aimed to evaluate the influence of preoperative MRI on the positive surgical margin (PSM) rates. Methods: We retrospectively reviewed 1070 prostate cancer patients treated with radical prostatectomy (RP) at Siriraj Hospital between January 2013 and September 2019. PSM rates were compared between those with and without preoperative MRI. PSM locations were analyzed. Results: In total, 322 (30.1%) patients underwent MRI before RP. PSM most frequently occurred at the apex (33.2%), followed by posterior (13.5%), bladder neck (12.7%), anterior (10.7%), posterolateral (9.9%), and lateral (2.3%) positions. In preoperative MRI, PSM was significantly lowered at the posterior surface (9.0% vs. 15.4%, p=0.01) and in the subgroup of urologists with less than 100 RP experiences (32% vs. 51%, odds ratio=0.51, p<0.05). Blood loss was also significantly decreased when a preoperative image was obtained (200 mL vs. 250 mL, p=0.02). Multivariate analysis revealed that only preoperative MRI status was associated with overall PSM and PSM at the prostatic apex. Neither the surgical approach, the neurovascular bundle sparing technique, nor the perioperative blood loss was associated with PSM. Conclusion: MRI is associated with less overall PSM, PSM at apex, and blood loss during RP. Additionally, preoperative MRI has shown promise in lowering the PSM rate among urologists who are in the early stages of performing RP.
|
Received: 21 January 2022
Available online: 20 October 2023
|
Corresponding Authors:
*E-mail address: thitipat.han@gmail.com (T. Hansomwong).
|
|
|
TRENDMD: |
|
|
Cite this article: |
Thitipat Hansomwong,Pat Saksirisampant,Sudhir Isharwal, et al. Role of preoperative magnetic resonance imaging on the surgical outcomes of radical prostatectomy: Does preoperative tumor recognition reduce the positive surgical margin in a specific location? Experience from a Thailand prostate cancer specialized center[J]. Asian Journal of Urology,
2023, 10(4): 494-501.
|
|
|
|
URL: |
http://www.ajurology.com/EN/10.1016/j.ajur.2022.05.012 OR http://www.ajurology.com/EN/Y2023/V10/I4/494 |
Characteristic | Preoperative MRI (n=322) | Non-MRI (n=748) | p-Value | Agea, year | 68.29±6.62 | 67.59±6.37 | 0.20 | Op-timea, min | 182.51±73.11 | 187.64±77.08 | 0.36 | Blood lossb, mL | 200 (20-400) | 250 (50-450) | 0.02 | BMIb, kg/m2 | 24.61 (22.49-26.89) | 24.34 (22.41-26.54) | 0.30 | iPSAb, ng/mL | 10.1 (7.18-18.00) | 10.0 (6.70-16.30) | 0.41 | Tumor involvementb, % | 12.0 (5.0-22.0) | 15.0 (5.0-25.0) | 0.10 | Prostate sizea, mL | 44.07±22.97 | 42.77±21.19 | 0.40 | pTc | 0.50 | 2 | 182 (56.5) | 365 (48.8) | | 3a | 102 (31.7) | 243 (32.5) | | 3b | 35 (10.9) | 130 (17.4) | | 4 | 3 (0.9) | 10 (1.3) | | ISUP groupc | 0.07 | 1 | 28 (8.7) | 91 (12.2) | | 2 | 109 (33.9) | 261 (34.9) | | 3 | 74 (23.0) | 136 (18.2) | | 4 | 34 (10.6) | 61 (8.2) | | 5 | 58 (18.0) | 106 (14.2) | | ADT effect | 19 (5.9) | 93 (12.4) | | Surgical approachc | <0.05 | ORP | 27 (8.4) | 98 (13.1) | | LRP | 61 (18.9) | 231 (30.9) | | RARP | 234 (72.7) | 419 (56.0) | | Surgeon's experiencec | 0.70 | 1-100 | 73 (22.7) | 178 (23.8) | | >100 | 249 (77.3) | 570 (76.2) | | NVB sparing techniquec | 0.20 | None | 201 (62.4) | 508 (67.9) | | Unilateral | 28 (8.7) | 46 (6.1) | | Bilateral | 93 (28.9) | 194 (25.9) | |
|
Clinical and histological characteristics.
|
PSM location | Total | Preoperative MRI | Non-MRI | p-Value | Apex | 355 (33.2) | 96 (29.8) | 259 (34.6) | 0.30 | Posterior | 144 (13.5) | 29 (9.0) | 115 (15.4) | 0.01 | Bladder neck | 136 (12.7) | 34 (10.6) | 102 (13.6) | 0.20 | Anterior | 115 (10.7) | 36 (11.2) | 79 (10.6) | 0.80 | Posterolateral | 106 (9.9) | 32 (9.9) | 74 (9.9) | 0.70 | Lateral | 25 (2.3) | 6 (1.9) | 19 (2.5) | 0.50 | Overall | 532 (49.7) | 149 (46.3) | 383 (51.2) | 0.14 | sPSM | 271 (25.3) | 89 (27.6) | 182 (24.3) | 0.25 | mPSM | 261 (24.2) | 60 (18.6) | 201 (26.9) | <0.05 |
|
PSM location.
|
Clinical and pathological characteristics | Empty Cell | PSM, n (%) | Empty Cell | Preoperative MRI | Non-MRI | p-Value | Surgical approach | ORP | 11 (41) | 53 (54) | 0.20 | LRP | 33 (54) | 118 (51) | 0.70 | RARP | 105 (45) | 212 (51) | 0.20 | NVB sparing | None | 99 (49) | 257 (51) | 0.90 | Unilateral | 10 (36) | 25 (54) | 0.10 | Bilateral | 37 (40) | 100 (52) | 0.06 | pT | 2 | 62 (34) | 141 (39) | 0.40 | 3a | 61 (60) | 148 (61) | 0.80 | 3b | 25 (71) | 94 (72) | 0.40 | Surgeon experience | 1-100 | 23 (32) | 91 (51) | <0.05 | >100 | 126 (51) | 292 (51) | 0.90 |
|
Influences of RP approach and pT on PSM.
|
Clinical and pathological characteristics | Univariate analysis | Multivariate analysis | OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value | Preoperative MRI | No | 1 (ref) | | 1 (ref) | | Yes | 0.62 (0.45, 0.86) | <0.05 | 0.59 (0.42, 0.85) | <0.05 | ISUP group | 1 | 1 (ref) | | 1 (ref) | | 2 | 3.1 (1.6, 6.1) | <0.05 | 3.0 (1.5, 6.0) | <0.05 | 3 | 3.0 (1.5, 6.0) | <0.05 | 2.2 (1.0, 4.7) | <0.05 | 4 | 4.6 (2.1, 10.0) | <0.05 | 3.5 (1.5, 8.2) | <0.05 | 5 | 8.3 (3.8, 18.0) | <0.05 | 3.7 (1.6, 8.8) | <0.05 | ADT effect | 5.3 (2.2, 13.0) | <0.05 | 4.1 (1.6, 10.0) | <0.05 | Surgeon's experience | >100 | 1 (ref) | | 1 (ref) | | 1-100 | 0.57 (0.38, 0.83) | <0.05 | 0.51 (0.32, 0.79) | <0.05 | NVB sparing | None | 1 (ref) | | | | Unilateral | 0.76 (0.42, 1.40) | 0.40 | | | Bilateral | 1.20 (0.82, 1.70) | 0.30 | | | pT | 2 | 1 (ref) | | 1 (ref) | | 3a | 2.8 (1.9, 4.1) | <0.05 | 2.3 (1.5, 3.5) | <0.05 | 3b | 4.7 (2.6, 8.5) | <0.05 | 2.7 (1.3, 5.5) | <0.05 | Tumor involvement percentage | <50% | 1 (ref) | | 1 (ref) | | ≥50% | 5.4 (2.2, 13.0) | <0.05 | 2.4 (0.9, 6.3) | <0.05 | iPSA, ng/mL | <10 | 1 (ref) | | 1 (ref) | | 10 to 20 | 2.0 (1.3, 2.9) | <0.05 | 1.8 (1.2, 2.7) | <0.05 | ≥20 | 2.9 (1.8, 4.4) | <0.05 | 1.7 (1.0, 2.7) | 0.05 | Op-time, min | <120 | 1 (ref) | | 1 (ref) | | 120 to 180 | 0.60 (0.35, 1.0) | 0.07 | 0.79 (0.44, 1.4) | 0.40 | 180 to 240 | 0.53 (0.30, 0.94) | <0.05 | 0.60 (0.32, 1.1) | 0.10 | ≥240 | 0.62 (0.34, 1.10) | 0.10 | 0.84 (0.43, 1.7) | 0.60 | Blood loss, mL | <600 | 1 (ref) | | | | 600 to 1200 | 0.89 (0.50, 1.60) | 0.70 | | | ≥1200 | 1.10 (0.50, 2.40) | 0.80 | | |
|
Univariate and multivariate analyses of the risk of overall PSM in the propensity-matched group.
|
Clinical and pathological characteristics | Univariate analysis | Multivariate analysis | OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value | Preoperative MRI | No | 1 (ref) | | 1 (ref) | | Yes | 0.69 (0.49, 0.96) | <0.05 | 0.69 (0.48, 0.98) | <0.05 | ISUP group | 1 | 1 (ref) | | 1 (ref) | | 2 | 2.5 (1.1, 5.7) | <0.05 | 2.5 (1.1, 5.8) | <0.05 | 3 | 2.2 (1.0, 5.2) | 0.06 | 2.1 (0.9, 5.1) | 0.09 | 4 | 2.4 (1.0, 6.1) | 0.06 | 2.1 (0.8, 5.4) | 0.10 | 5 | 4.4 (1.9, 10) | <0.05 | 3.2 (1.3, 8.2) | <0.05 | ADT effect | 3.5 (1.3, 9.0) | <0.05 | 3.1 (1.2, 8.4) | <0.05 | Surgeon experience | >100 | 1 (ref) | | | | 1-100 | 0.69 (0.45, 1.10) | 0.08 | | | NVB sparing | None | 1 (ref) | | 1 (ref) | | Unilateral | 0.42 (0.20, 0.87) | <0.05 | 0.58 (0.27, 1.2) | 0.20 | Bilateral | 0.79 (0.54, 1.2) | 0.20 | 0.96 (0.63, 1.5) | 0.80 | pT | 2 | 1 (ref) | | 1 (ref) | | 3a | 1.2 (0.9, 1.8) | 0.30 | 0.90 (0.59, 1.40) | 0.60 | 3b | 1.8 (1.1, 3.0) | <0.05 | 0.81 (0.42, 1.60) | 0.50 | Tumor involvement percentage | <50% | 1 (ref) | | 1 (ref) | | ≥50% | 2.9 (1.6, 5.3) | <0.05 | 2.0 (1.0, 4.1) | 0.05 | iPSA, ng/mL | <10 | 1 (ref) | | 1 (ref) | | 10 to 20 | 1.6 (1.1, 2.4) | <0.05 | 1.6 (1.0, 2.4) | <0.05 | ≥20 | 2.6 (1.7, 3.9) | <0.05 | 2.1 (1.3, 3.5) | <0.05 | Op-time, min | <120 | 1 (ref) | | 1 (ref) | | 120 to 180 | 0.65 (0.39, 1.10) | 0.10 | 0.78 (0.45, 1.30) | 0.40 | 180 to 240 | 0.51 (0.29, 0.90) | <0.05 | 0.54 (0.29, 0.98) | <0.05 | ≥240 | 0.89 (0.50, 1.60) | 0.70 | 0.97 (0.53, 1.80) | 0.90 | Blood loss, mL | <600 | 1 (ref) | | | | 600 to 1200 | 1.10 (0.59, 1.90) | 0.80 | | | ≥1200 | 0.93 (0.41, 2.10) | 0.90 | | |
|
Univariate and multivariate analyses of the risk of apical PSM in the propensity-matched group.
|
[1] |
Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol 2019; 76:340-51.
doi: S0302-2838(19)30180-0
pmid: 30898406
|
[2] |
Johnson DC, Raman SS, Mirak SA, Kwan L, Bajgiran AM, Hsu W, et al. Detection of individual prostate cancer foci via multiparametric magnetic resonance imaging. Eur Urol 2019; 75: 712-20.
doi: S0302-2838(18)30930-8
pmid: 30509763
|
[3] |
Aussavavirojekul P, Hoonlor A, Srinualnad S. Optimization of clinical risk-factor interpretation and radiological findings with machine learning for PIRADS category 3 patients. Prostate 2022; 82:235-44.
doi: 10.1002/pros.v82.2
|
[4] |
Exterkate L, Wegelin O, Barentsz JO, van der Leest MG, Kummer JA, Vreuls W, et al. Is there still a need for repeated systematic biopsies in patients with previous negative biopsies in the era of magnetic resonance imaging-targeted biopsies of the prostate? Eur Urol Oncol 2020; 3:216-23.
doi: S2588-9311(19)30080-X
pmid: 31239236
|
[5] |
van der Leest M, Cornel E, Israel B, Hendriks R, Padhani AR, Hoogenboom M, et al. Head-to-head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate resonance imaging with subsequent magnetic resonance-guided biopsy in biopsy-naive men with elevated prostate-specific antigen: a large prospective multicenter clinical study. Eur Urol 2019; 75:570-8.
doi: 10.1016/j.eururo.2018.11.023
|
[6] |
Rouviere O, Puech P, Renard-Penna R, Claudon M, Roy C, Mege-Lechevallier F, et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsynaive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol 2019; 20:100-9.
doi: 10.1016/S1470-2045(18)30569-2
|
[7] |
Sanda MG, Cadeddu JA, Kirkby E, Chen RC, Crispino T, Fontanarosa J, et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: risk stratification, shared decision making, and care options. J Urol 2018; 199:683-90.
doi: S0022-5347(17)78003-2
pmid: 29203269
|
[8] |
Dankulchai P, Tupwongse P, Thephamongkhol K, Petchsuksiri J, Chansilpa Y, Ieumwananonthachai N, et al. Preliminary result of using intensity modulated radiation therapy (IMRT) as a primary treatment for prostate cancer at Siriraj Hospital in Thailand: toxicity and biochemical outcomes. Siriraj Med J 2010; 62:250-4.
|
[9] |
Kordan Y, Salem S, Chang SS, Clark PE, Cookson MS, Davis R, et al. Impact of positive apical surgical margins on likelihood of biochemical recurrence after radical prostatectomy. J Urol 2009; 182:2695-701.
doi: 10.1016/j.juro.2009.08.054
pmid: 19836759
|
[10] |
Pettus JA, Weight CJ, Thompson CJ, Middleton RG, Stephenson RA. Biochemical failure in men following radical retropubic prostatectomy: impact of surgical margin status and location. J Urol 2004; 172:129-32.
doi: 10.1097/01.ju.0000132160.68779.96
pmid: 15201752
|
[11] |
Zhang L, Wu B, Zha Z, Zhao H, Yuan J, Jiang Y, et al. Surgical margin status and its impact on prostate cancer prognosis after radical prostatectomy: a meta-analysis. World J Urol 2018; 36:1803-15.
doi: 10.1007/s00345-018-2333-4
pmid: 29766319
|
[12] |
Yodkhunatham N, Taweemonkongsap T, Ramart P, Jitpraphai S, Hansomwong T, Leewansangtong S, et al. Tenyear oncological outcomes of prostate cancer after roboticassisted laparoscopic radical prostatectomy: single center experience. J Med Assoc Thai 2020; 103:81-6.
|
[13] |
Saksirisampant P, Nualyong C, Srinualnad S, Leewansangtong S, Taweemonkongsap T, Jitpraphai S, et al. PSM after RP predict survival outcome associated risk factors in Thai prostate cancer patients. J Med Assoc Thai 2020; 103: 68-74.
doi: 10.35755/jmedassocthai
|
[14] |
Bratan F, Niaf E, Melodelima C, Chesnais AL, Souchon R, Mege- Lechevallier F, et al. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol 2013; 23: 2019-29.
doi: 10.1007/s00330-013-2795-0
pmid: 23494494
|
[15] |
Rud E, Baco E, Klotz D, Rennesund K, Svindland A, Berge V, et al. Does preoperative magnetic resonance imaging reduce the rate of positive surgical margins at radical prostatectomy in a randomised clinical trial? Eur Urol 2015; 68:487-96.
doi: 10.1016/j.eururo.2015.02.039
pmid: 25813692
|
[16] |
McClure TD, Margolis DJ, Reiter RE, Sayre JW, Thomas MA, Nagarajan R, et al. Use of MR imaging to determine preservation of the neurovascular bundles at robotic-assisted laparoscopic prostatectomy. Radiology 2012; 262:874-83.
doi: 10.1148/radiol.11103504
pmid: 22274837
|
[17] |
Iremashvili V, Pelaez L, Jorda M, Manoharan M, Arianayagam M, Rosenberg DL, et al. Prostate sampling by 12- core biopsy: comparison of the biopsy results with tumor location in prostatectomy specimens. Urology 2012; 79:37-42.
doi: 10.1016/j.urology.2011.09.011
pmid: 22055691
|
[18] |
Takashima R, Egawa S, Kuwao S, Baba S. Anterior distribution of stage T1c nonpalpable tumors in radical prostatectomy specimens. Urology 2002; 59:692-7.
pmid: 11992842
|
[19] |
Fontenot PA, Mansour AM. Reporting positive surgical margins after radical prostatectomy: time for standardization. BJU Int 2013; 111:E290-9. https://doi.org/10.1111/j.1464-410X.2012.11640.x.
doi: 10.1111/bju.2013.111.issue-8
|
[20] |
Wadhwa K, Patruno G, Patterson A, Barrett T, Dalia C, Koo BC, et al. Robotic assisted laparoscopic radical prostatectomy following transrectal compared to transperineal prostate biopsy: surgical, oncological and functional outcomes. Minerva Urol Nefrol 2017; 69:85-92.
doi: 10.23736/S0393-2249.16.02759-4
pmid: 28009149
|
[21] |
Yao HH, Ball K, Bazo A, Terry TR, Walton TJ. Effect of transperineal template prostate biopsy on perioperative and functional outcomes following robotic-assisted radical prostatectomy. J Clin Urol 2022; 15:331-40.
|
[22] |
Ayala AG, Ro JY, Babaian R, Troncoso P, Grignon DJ. The prostatic capsule: does it exist? Its importance in the staging and treatment of prostatic carcinoma. Am J Surg Pathol 1989; 13:21-7.
pmid: 2909195
|
[23] |
Wibulpolprasert P, Raman SS, Hsu W, Margolis DJA, Asvadi NH, Khoshnoodi P, et al. Influence of the location and zone of tumor in prostate cancer detection and localization on 3-T multiparametric MRI based on PI-RADS version 2. AJR Am J Roentgenol 2020; 214:1101-11.
doi: 10.2214/AJR.19.21608
|
[24] |
J?derling F, Akre O, Aly M, Bjorklund J, Olsson M, Adding C, et al. Preoperative staging using magnetic resonance imaging and risk of positive surgical margins after prostate-cancer surgery. Prostate Cancer Prostatic Dis 2019; 22:391-8.
doi: 10.1038/s41391-018-0116-z
|
[25] |
Druskin SC, Liu JJ, Young A, Feng Z, Dianat SS, Ludwig WW, et al. Prostate MRI prior to radical prostatectomy: effects on nerve sparing and pathological margin status. Res Rep Urol 2017; 9:55-63.
doi: 10.2147/RRU.S128499
pmid: 28459044
|
[26] |
Coakley FV, Eberhardt S, Wei DC, Wasserman ES, Heinze SB, Scardino PT, et al. Blood loss during radical retropubic prostatectomy: relationship to morphologic features on preoperative endorectal magnetic resonance imaging. Urology 2002; 59:884-8.
pmid: 12031374
|
[27] |
Salonia A, Burnett AL, Graefen M, Hatzimouratidis K, Montorsi F, Mulhall JP, et al. Prevention and management of postprostatectomy sexual dysfunctions. Part 1: choosing the right patient at the right time for the right surgery. Eur Urol 2012; 62:261-72.
doi: 10.1016/j.eururo.2012.04.046
pmid: 22575909
|
[28] |
Michl U, Tennstedt P, Feldmeier L, Mandel P, Oh SJ, Ahyai S, et al. Nerve-sparing surgery technique, not the preservation of the neurovascular bundles, leads to improved long-term continence rates after radical prostatectomy. Eur Urol 2016; 69:584-9.
doi: S0302-2838(15)00696-X
pmid: 26277303
|
[29] |
Kozikowski M, Malewski W, Michalak W, Dobruch J. Clinical utility of MRI in the decision-making process before radical prostatectomy: systematic review and meta-analysis. PLoS One 2019; 14:e0210194. https://doi.org/10.1371/journal.pone.0210194.
doi: 10.1371/journal.pone.0210194
|
[1] |
Enrico Checcucci, Alberto Piana, Gabriele Volpi, Pietro Piazzolla, Daniele Amparore, Sabrina De Cillis, Federico Piramide, Cecilia Gatti, Ilaria Stura, Enrico Bollito, Federica Massa, Michele Di Dio, Cristian Fiori, Francesco Porpiglia. Three-dimensional automatic artificial intelligence driven augmented-reality selective biopsy during nerve-sparing robot-assisted radical prostatectomy: A feasibility and accuracy study[J]. Asian Journal of Urology, 2023, 10(4): 407-415. |
[2] |
Roxana Ramos-Carpinteyro, Ethan L. Ferguson, Jaya S. Chavali, Albert Geskin, Jihad Kaouk. First 100 cases of transvesical single-port robotic radical prostatectomy[J]. Asian Journal of Urology, 2023, 10(4): 416-422. |
[3] |
Umberto Carbonara, Giuseppe Lippolis, Luciano Rella, Paolo Minafra, Giuseppe Guglielmi, Antonio Vitarelli, Giuseppe Lucarelli, Pasquale Ditonno. Intermediate-term oncological and functional outcomes in prostate cancer patients treated with perineal robot-assisted radical prostatectomy: A single center analysis[J]. Asian Journal of Urology, 2023, 10(4): 423-430. |
[4] |
Angelo Territo, Alessandro Uleri, Andrea Gallioli, Josep Maria Gaya, Paolo Verri, Giuseppe Basile, Alba Farré, Alejandra Bravo, Alessandro Tedde, Óscar Rodríguez Faba, Joan Palou, Alberto Breda. Robot-assisted oncologic pelvic surgery with Hugo™ robot-assisted surgery system: A single-center experience[J]. Asian Journal of Urology, 2023, 10(4): 461-466. |
[5] |
Thomas Whish-Wilson, Jo-Lynn Tan, William Cross, Lih-Ming Wong, Tom Sutherland. Prostate magnetic resonance imaging and the value of experience: An intrareader variability study[J]. Asian Journal of Urology, 2023, 10(4): 488-493. |
[6] |
Kerri R. Beckmann, Michael E. O'Callaghan, Andrew D. Vincent, Kim L. Moretti, Nicholas R. Brook. Clinical outcomes for men with positive surgical margins after radical prostatectomy—results from the South Australian Prostate Cancer Clinical Outcomes Collaborative community-based registry[J]. Asian Journal of Urology, 2023, 10(4): 502-511. |
[7] |
Wei He,Yutian Xiao,Shi Yan,Yasheng Zhu,Shancheng Ren. Cell-free DNA in the management of prostate cancer: Current status and future prospective[J]. Asian Journal of Urology, 2023, 10(3): 298-316. |
[8] |
Shulin Wu,Sharron X. Lin,Kristine M. Cornejo,Rory K. Crotty,Michael L. Blute,Douglas M. Dahl,Chin-Lee Wu. Clinicopathological and oncological significance of persistent prostate-specific antigen after radical prostatectomy: A systematic review and meta-analysis[J]. Asian Journal of Urology, 2023, 10(3): 317-328. |
[9] |
Stefano Alba,Deborah Fimognari,Fabio Crocerossa,Luigi Ascalone,Carmine Pullano,Fernando Chiaravalloti,Francesco Chiaradia,Umberto Carbonara,Matteo Ferro,Ottavio de Cobelli,Vincenzo Pagliarulo,Giuseppe Lucarelli,Michele Battaglia,Rocco Damiano,Francesco Cantiello. Neuraxial anesthesia versus general anesthesia in patients undergoing three-dimensional laparoscopic radical prostatectomy: Preliminary results of a prospective comparative study[J]. Asian Journal of Urology, 2023, 10(3): 329-336. |
[10] |
Fabricio B. Carrerette,Daniela B. Rodeiro,Rui T. F. Filho,Paulo A. Santos,Celso C. Lara,Ronaldo Damião. Randomized controlled trial comparing open anterograde anatomic radical retropubic prostatectomy with retrograde technique[J]. Asian Journal of Urology, 2023, 10(2): 151-157. |
[11] |
Sat Prasad Nepal,Takehiko Nakasato,Takashi Fukagai,Yoshio Ogawa,Yoshihiro Nakagami,Takeshi Shichijo,Jun Morita,Yoshiko Maeda,Kazuhiko Oshinomi,Tsutomu Unoki,Tetsuo Noguchi,Tatsuki Inoue,Ryosuke Kato,Satoshi Amano,Moyuru Mizunuma,Masahiro Kurokawa,Yoshiki Tsunokawa,Sou Yasuda. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios alone or combined with prostate-specific antigen for the diagnosis of prostate cancer and clinically significant prostate cancer[J]. Asian Journal of Urology, 2023, 10(2): 158-165. |
[12] |
Hua Gong,Kang Chen,Lan Zhou,Yongchao Jin,Weihua Chen. Deleted in liver cancer 1 suppresses the growth of prostate cancer cells through inhibiting Rho-associated protein kinase pathway[J]. Asian Journal of Urology, 2023, 10(1): 50-57. |
[13] |
Leandro Blas,Masaki Shiota,Shohei Nagakawa,Shigehiro Tsukahara,Takashi Matsumoto,Ken Lee,Keisuke Monji,Eiji Kashiwagi,Junichi Inokuchi,Masatoshi Eto. Validation of user-friendly models predicting extracapsular extension in prostate cancer patients[J]. Asian Journal of Urology, 2023, 10(1): 81-88. |
[14] |
Donghua Xie,Di Gu,Ming Lei,Cong Cai,Wen Zhong,Defeng Qi,Wenqi Wu,Guohua Zeng,Yongda Liu. The application of indocyanine green in guiding prostate cancer treatment[J]. Asian Journal of Urology, 2023, 10(1): 1-8. |
[15] |
Umberto Carbonara,Daniele Amparore,Cosimo Gentile,Riccardo Bertolo,Selcuk Erdem,Alexandre Ingels,Michele Marchioni,Constantijn H.J. Muselaers,Onder Kara,Laura Marandino,Nicola Pavan,Eduard Roussel,Angela Pecoraro,Fabio Crocerossa,Giuseppe Torre,Riccardo Campi,Pasquale Ditonno. Current strategies to diagnose and manage positive surgical margins and local recurrence after partial nephrectomy[J]. Asian Journal of Urology, 2022, 9(3): 227-242. |
|
|
|
|