|
|
Single nucleotide polymorphism within chromosome 8q24 is associated with prostate cancer development in Saudi Arabia |
Awad Elsid Osmana,Sahar Alharbia,Atif Ali Ahmedb,*( ),Asim Ali Elbagira
|
aPathology and Clinical Laboratory Management Department (PCLM), King Fahad Medical City, Riyadh, Saudi Arabia bDepartment of Pathology and Laboratory Medicine, University of Missouri at Children's Mercy Hospital, Kansas City, MO, USA |
|
|
Abstract Objective: Genome-wide association studies have demonstrated that single nucleotide polymorphisms (SNPs) are important risk factors for the development of prostate cancer (PCa). Preliminary studies have suggested that the incidence of PCa in Saudi males is low but is probably familial or genetically related. Methods: To identify any possible association of SNP with PCa development in Saudi patients, we investigated a group of SNPs in Saudi PCa patients (n=85) and compared the outcomes to healthy normal controls (n=115) and nodular hyperplasia patients (n=120). DNA was extracted from paraffin-embedded formalin fixed tissue or whole blood from both patients’ groups and healthy control group. A total of thirteen SNPs were genotyped using TaqMan® minor groove binder polymerase chain reaction assay. Results: The rs16901979A, s629242T and rs1447295A alleles were found at significantly higher frequency in PCa patients than controls (p< 0.05). The rs16901979 CA genotype was found at significantly greater frequency in PCa patients than in healthy controls (43% vs. 14%, odds ratio=4.6, p=0.0001) and benign hyperplasia group (43% vs. 25%, odds ratio=2.2, p=0.009). Conclusion: Our study has highlighted the association of rs16901979 SNP with PCa in Saudi males. Such findings have important implications in the PCa diagnosis and in screening unaffected family members of Saudi patients.
|
Received: 15 October 2021
Available online: 20 January 2024
|
Corresponding Authors:
*E-mail address: atifaahmed@msn.com (A.A. Ahmed).
|
|
|
SNP ID | Reference | Gene name | Chromosome location | Allele | GMAF | rs4430796 | Zheng et al. [33] | TCF2 | Chromosome 17q12 | A>G | 0.4656 | rs1859962 | Zheng et al. [33] | CASC17 | Chromosome 17q24.3 | T>G | 0.3976 | rs16901979 | Zheng et al. [33] | Intergenic | Chromosome 8q24 | C>T | 0.18 | rs6983267 | Wokolorczyk et al. [34] | CASC8, CCAT2 | Chromosome 8q24 | G>T | 0.4366 | rs1447295 | Zheng et al. [33] | CASC8 | Chromosome 8q24 | C>A | 0.1818 | rs1571801 | Duggan et al. [35] | DAB2IP | Chromosome 9 | C>A | 0.1667 | rs4054823 | Xu et al. [36] | Intragenic | Chromosome 17p12 | T>C | 0.4421 | rs1545985 | Duggan et al. [35] | FYCO1 | Chromosome 3 | A>G | 0.1919 | rs7652331 | Duggan et al. [35] | FYCO1 | Chromosome 3 | C>T | 0.1511 | rs629242 | Duggan et al. [35] | KIAA1211 | Chromosome 4 | C>T | 0.2562 | rs13149290 | Duggan et al. [35] | ZNF827 | Chromosome 4 | T>C | 0.416 | rs251177 | Duggan et al. [35] | FCHSD1 | Chromosome 5 | T>C | 0.2025 | rs10492519 | Duggan et al. [35] | FAM124A | Chromosome 13 | A>G | 0.214 |
|
Thirteen SNPs included in the study.
|
No | SNP ID | p-Value | 1 | rs4430796 | 0.46 | 2 | rs1859962 | 0.46 | 3 | rs6983267 | 0.85 | 4 | rs1447295 | 0.0003 | 5 | rs4054823 | 0.27 | 6 | rs16901979 | 0.54 | 7 | rs251177 | 0.84 | 8 | rs7652331 | 0.79 | 9 | rs1545985 | 0.0002 | 10 | rs1571801 | 1 | 11 | rs629242 | 1 | 12 | rs13149290 | 0.8 | 13 | rs10492519 | 0.06 |
|
The p-values for Hardy-Weinberg equilibrium for the studied SNPs in healthy control samples.
|
SNP ID | Allele | PCa, % | HC, % | BH, % | PCa vs. HCa | PCa vs. BHa | BH vs. HCa | rs4430796 | G | 58 | 49 | 53 | 0.6 (0.5, 1.1); 0.08 | 0.5 (0.6, 1.2); 0.3 | 0.8 (0.5, 1.3); 0.5 | A | 42 | 51 | 47 | rs1859962 | G | 51 | 53 | 60 | 1.1 (0.7, 1.6); 0.6 | 1.5 (1.0, 2.2); 0.05 | 0.7 (0.5, 1.1); 0.1 | T | 49 | 47 | 40 | rs6983267 | G | 68 | 61 | 66 | 0.7 (0.5, 1.1); 0.12 | 0.9 (0.6, 1.4); 0.7 | 0.8 (0.5, 1.2); 0.2 | T | 32 | 39 | 34 | rs1447295 | C | 88 | 89 | 94 | 1.1 (0.6, 1.9); 0.9 | 2.2 (1.1, 4.4); 0.03 | 0.5 (0.5, 1.2); 0.04 | A | 12 | 11 | 6 | rs4054823 | C | 50 | 46 | 50 | 0.9 (0.6, 1.3); 0.4 | 1 | 0.9 (0.6, 1.2); 0.4 | T | 50 | 54 | 50 | rs16901979 | C | 76 | 92 | 87 | 3.6 (2.0, 6.6); 0.0001 (0.0013) | 2.0 (1.2, 3.3); 0.008 | 1.8 (1.0, 3.3); 0.06 | A | 24 | 8 | 13 | rs251177 | T | 71 | 64 | 60 | 0.7 (0.5, 1.2); 0.2 | 0.6 (0.4, 0.9); 0.03 | 1.2 (0.8, 1.7); 0.4 | C | 29 | 36 | 40 | rs7652331 | C | 76 | 78 | 81 | 1.1 (0.7, 1.7); 0.7 | 1.3 (0.8, 2.1); 0.3 | 0.9 (0.5, 1.3); 0.5 | T | 24 | 22 | 19 | rs1545985 | A | 78 | 76 | 80 | 0.4 (0.6, 1.4); 0.5 | 1.1 (0.7,1.8); 0.7 | 0.8 (0.5, 1.3); 0.4 | G | 22 | 24 | 20 | rs1571801 | G | 88 | 85 | 84 | 0.8 (0.4, 1.4); 0.4 | 0.7 (0.4, 1.3); 0.2 | 1.1 (0.7, 1.8); 0.8 | T | 12 | 15 | 16 | rs629242 | C | 68 | 78 | 77 | 1.6 (1.1, 2.6); 0.03 | 1.5 (1.0, 2.4); 0.6 | 1.1 (0.7, 1.7); 0.8 | T | 32 | 22 | 23 | rs13149290 | C | 75 | 75 | 78 | 1.1 (0.7, 1.7); 0.7 | 1.3 (0.8, 2.0); 0.3 | 0.9 (0.6, 1.3); 0.5 | T | 25 | 25 | 22 | rs10492519 | A | 72 | 70 | 74 | 0.8 (0.6, 1.4); 0.6 | 1.1 (0.7, 1.8); 0.6 | 0.8 (0.5, 1.2); 0.3 | G | 28 | 30 | 26 |
|
Allele frequencies of the studied SNPs among PCa patients (n=85), BH patients (n=120), and HCs (n=115).
|
SNP ID | Genotype | PCa, % | HC, % | BH, % | PCa vs. HCa | BH vs. PCaa | BH vs. HCa | rs4430796 | GG | 33 | 22 | 29 | Reference | Reference | Reference | GA | 48 | 54 | 48 | 0.6 (0.3,1.2); 0.1 | 0.9 (0.4, 1.8); 0.7 | 1.4 (0.8, 2.9); 0.3 | AA | 19 | 24 | 23 | 1.1 (0.5, 2.3); 0.7 | 0.7 (0.3, 1.6); 0.4 | 1.3 (0.6, 3.1); 0.4 | rs1859962 | GG | 26 | 29 | 41 | Reference | Reference | Reference | GT | 49 | 47 | 39 | 1.6 (0.6, 2.3); 0.7 | 1.9 (1.0, 3.8); 0.3 | 0.6 (0.3, 1.1); 0.1 | TT | 25 | 24 | 20 | 1.2 (0.5, 2.5); 0.7 | 1.9 (0.9, 4.2); 0.08 | 0.6 (0.3, 1.3); 0.2 | rs6983267 | GG | 47 | 37 | 44 | Reference | Reference | Reference | GT | 42 | 48 | 44 | 0.7 (0.4, 1.2); 0.2 | 0.9 (0.4, 1.6); 0.7 | 0.7 (0.4, 1.3); 0.8 | TT | 11 | 15 | 12 | 0.6 (0.2, 1.4); 0.2 | 0.9 (0.3, 2.1); 0.7 | 0.6 (0.3, 1.6); 0.4 | rs1447295 | CC | 81 | 84 | 92 | Reference | Reference | Reference | CA | 13 | 11 | 5 | 1.2 (0.5, 2.9); 0.7 | 2.9 (0.9, 8.5); 0.06 | 0.4 (0.3, 1.2); 0.1 | AA | 6 | 5 | 3 | 1.2 (0.4, 4.2); 0.7 | 1.9 (0.4; 8.1); 0.4 | 0.5 (1.2, 2.3); 0.8 | rs4054823 | CC | 25 | 24 | 31 | Reference | Reference | Reference | TC | 50 | 44 | 39 | 1.1 (0.5, 2.2); 0.8 | 1.5 (0.8, 3.1); 0.2 | 0.7 (0.3, 1.4); 0.3 | TT | 25 | 32 | 30 | 0.8 (0.3, 1.6); 0.7 | 1.1 (0.5, 2.2); 0.9 | 0.9 (0.4, 1.9); 0.9 | rs16901979 | CC | 57 | 85 | 74 | Reference | Reference | Reference | CA | 43 | 14 | 25 | 4.6 (2.3, 9.1); 0.0001 (0.0012) | 2.2 (1.2, 4.1); 0.009 | 2.1 (1.0, 4.8); 0.03 | AA | 2 | 1 | 1 | n/a | n/a | n/a | rs251177 | TT | 47 | 41 | 35 | Reference | Reference | Reference | TC | 47 | 47 | 51 | 0.9 (0.5, 1.6); 0.6 | 0.6 (0.4, 1.2); 0.2 | 1.3 (0.7, 2.3); 0.4 | CC | 6 | 12 | 14 | 0.4 (0.2, 1.3); 0.1 | 0.3 (0.1, 1.0); 0.06 | 1.3 (0.6, 3.3); 0.5 | rs7652331 | CC | 58 | 62 | 67 | Reference | Reference | Reference | TC | 37 | 33 | 28 | 1.2 (0.7, 2.2); 0.5 | 1.5 (0.8, 2.9); 0.2 | 0.7 (0.4, 1.4); 0.4 | TT | 5 | 5 | 5 | 1.1 (0.3, 3.9); 0.9 | 1.2 (0.3, 4.2); 0.8 | 0.9 (0.3, 3.4); 0.9 | rs1545985 | AA | 57 | 53 | 59 | Reference | Reference | Reference | AG | 43 | 47 | 41 | 0.6 (0.6, 1.7); 0.9 | 1.1 (0.6, 2.0); 0.8 | 0.8 (0.4, 1.4); 0.4 | GG | 0 | 0 | 0 | n/a | n/a | n/a | rs1571801 | GG | 78 | 72 | 73 | Reference | Reference | Reference | GT | 21 | 26 | 22 | 0.7 (0.4, 1.4); 0.4 | 0.8 (0.4, 1.6); 0.6 | 0.8 (0.4, 1.6); 0.6 | TT | 1 | 2 | 5 | n/a | n/a | n/a | rs629242 | CC | 46 | 61 | 57 | Reference | Reference | Reference | TC | 46 | 35 | 41 | 1.7 (1.0, 3.1); 0.06 | 1.3 (0.8, 2.5); 0.3 | 1.2 (0.7, 2.2); 0.4 | TT | 8 | 4 | 2 | 0.7 (0.2, 2.3); 0.5 | 5.0 (0.1, 24); 0.06 | 0.5 (0.1, 3.0); 0.5 | rs13149290 | CC | 54 | 56 | 58 | Reference | Reference | Reference | TC | 39 | 39 | 39 | 1.0 (0.6, 1.9); 0.9 | 1.1 (0.6, 1.9); 0.8 | 1.0 (0.5, 1.7); 0.9 | TT | 7 | 5 | 3 | 1.5 (0.4, 4.9); 0.5 | 2.5 (0.6, 10.1); 0.2 | 1.6 (0.4, 7.5); 0.5 | rs10492519 | AA | 56 | 52 | 54 | Reference | Reference | Reference | AG | 34 | 35 | 40 | 1.1 (0.6, 2.1); 0.7 | 0.8 (0.4, 1.5); 0.7 | 0.9 (0.5, 1.7); 0.8 | GG | 10 | 13 | 6 | 0.7 (0.3, 1.8); 0.5 | 0.2 (0.02, 1.4); 0.1 | 0.4 (0.2, 1.2); 0.1 |
|
Genotype frequencies of studied SNPs in HCs (n=115) and PCa patients (n=85) and BH patients (n=120).
|
[1] |
Pernar CH, Ebot EM, Wilson KM, Mucci LA. The epidemiology of prostate cancer. Cold Spring Harb Perspect Med 2018; 8:a030361. https://doi.org/10.1101/cshperspect.a030361.
doi: 10.1101/cshperspect.a030361
|
[2] |
Olmedo-Requena R, Lozano-Lorca M, Salcedo-Bellido I, Jimé-nez-Pacheco A, Vázquez-Alonso F, García-Caballos M, et al. Compliance with the 2018 World Cancer Research Fund/American Institute for Cancer Research cancer prevention recommendations and prostate cancer. Nutrients 2020; 12: 768. https://doi.org/10.3390/nu12030768.
doi: 10.3390/nu12030768
|
[3] |
Kraywinkel K, Lehnert M, Semjonow A, Hense HW. [Epidemiology of prostate cancer: recent results from the epidemiological cancer register of the district of Münster (Germany)]. Urologe 2008; 47:853-9. [Article in German].
doi: 10.1007/s00120-008-1691-8
|
[4] |
Clinton SK, Giovannucci EL, Hursting SD. The World Cancer Research Fund/American Institute for Cancer Research third expert report on diet, nutrition, physical activity, and cancer: impact and future directions. J Nutr 2020; 150:663-71.
|
[5] |
Goodman JE, Mayfield DB, Becker RA, Hartigan SB, Erraguntla NK. Recommendations for further revisions to improve the International Agency for Research on Cancer (IARC) Monograph program. Regul Toxicol Pharmacol 2020; 113:104639. https://doi.org/10.1016/j.yrtph.2020.104639.
|
[6] |
Deka R, Courtney PT, Parsons JK, Nelson TJ, Nalawade V, Luterstein E, et al. Association between African American race and clinical outcomes in men treated for low-risk prostate cancer with active surveillance. JAMA 2020; 324:1747-54.
doi: 10.1001/jama.2020.17020
pmid: 33141207
|
[7] |
Ang M, Borg M, O’Callaghan ME; South Australian Prostate Cancer Clinical Outcomes Collaborative (SA-PCCOC). Survival outcomes in men with a positive family history of prostate cancer: a registry based study. BMC Cancer 2020; 20:894. https://doi.org/10.1186/s12885-020-07174-9.
doi: 10.1186/s12885-020-07174-9
pmid: 32948129
|
[8] |
Mukherji D, Youssef B, Dagher C, El-Hajj A, Nasr R, Geara F, et al. Management of patients with high-risk and advanced prostate cancer in the Middle East: resource-stratified consensus recommendations. World J Urol 2020; 38:681-93.
doi: 10.1007/s00345-019-02872-x
pmid: 31297628
|
[9] |
Almutairi AA, Edali AM, Khan SA, Aldihan WA, Alkhenizan AH. Yield of prostate cancer screening at a community based clinic in Saudi Arabia. Saudi Med J 2019; 40:681-6.
doi: 10.15537/smj.2019.7.24256
pmid: 31287128
|
[10] |
Petrovics G, Price DK, Lou H, Chen Y, Garland L, Bass S, et al. Increased frequency of germline BRCA2 mutations associates with prostate cancer metastasis in a racially diverse patient population. Prostate Cancer Prostatic Dis 2019; 22:406-10.
doi: 10.1038/s41391-018-0114-1
|
[11] |
Das S, Salami SS, Spratt DE, Kaffenberger SD, Jacobs MF, Morgan TM. Bringing prostate cancer germline genetics into clinical practice. J Urol 2019; 202:223-30.
doi: 10.1097/JU.0000000000000137
pmid: 30730411
|
[12] |
Yadav S, Anbalagan M, Baddoo M, Chellamuthu VK, Mukhopadhyay S, Woods C, et al. Somatic mutations in the DNA repairome in prostate cancers in African Americans and Caucasians. Oncogene 2020; 39:4299-311.
doi: 10.1038/s41388-020-1280-x
pmid: 32300177
|
[13] |
Zheng SL, Sun J, Wiklund F, Smith S, Stattin P, Li G, et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med 2008; 358:910-9.
doi: 10.1056/NEJMoa075819
|
[14] |
Hazelett DJ, Rhie SK, Gaddis M, Yan C, Lakeland DL, Coetzee SG, et al. Comprehensive functional annotation of 77 prostate cancer risk loci. PLoS Genet 2014; 10:e1004102. https://doi.org/10.1371/journal.pgen.1004102.
doi: 10.1371/journal.pgen.1004102
|
[15] |
Whitaker HC, Kote-Jarai Z, Ross-Adams H, Warren AY, Burge J, George A, et al. The rs10993994 risk allele for prostate cancer results in clinically relevant changes in microseminoproteinbeta expression in tissue and urine. PLoS One 2010; 5:e13363. https://doi.org/10.1371/journal.pone.0013363.
doi: 10.1371/journal.pone.0013363
|
[16] |
Gilbert MT, Haselkorn T, Bunce M, Sanchez JJ, Lucas SB, Jewell LD, et al. The isolation of nucleic acids from fixed, paraffin-embedded tissuesdwhich methods are useful when? PLoS One 2007; 2:e537. https://doi.org/10.1371/journal.pone.0000537.
doi: 10.1371/journal.pone.0000537
pmid: 17579711
|
[17] |
Pikor LA, Enfield KS, Cameron H, Lam WL. DNA extraction from paraffin embedded material for genetic and epigenetic analyses. J Vis Exp 2011; 49:2763. https://doi.org/10.3791/2763.
|
[18] |
Pociot F, M?lvig J, Wogensen L, Worsaae H, Nerup J. A TaqI polymorphism in the human interleukin-1β (IL-1β) gene correlates with IL-1β secretion in vitro. Eur J Clin Invest 1992; 22:396-402.
doi: 10.1111/j.1365-2362.1992.tb01480.x
pmid: 1353022
|
[19] |
Rodriguez S, Gaunt TR, Day IN. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol 2009; 169:505-14.
doi: 10.1093/aje/kwn359
pmid: 19126586
|
[20] |
Ma VL, Lin SL. Examining the rare disease assumption used to justify HWE testing with control samples. Math Biosci Eng 2019; 17:73-91.
doi: 10.3934/mbe.2020004
pmid: 31731340
|
[21] |
Bulger M. Changing the guard at a prostate cancer SNP. Cell 2018; 174:501-2.
doi: S0092-8674(18)30908-5
pmid: 30053422
|
[22] |
Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, et al. Mapping copy number variation by population-scale genome sequencing. Nature 2011; 470:59-65.
doi: 10.1038/nature09708
|
[23] |
Bomba L, Walter K, Soranzo N. The impact of rare and lowfrequency genetic variants in common disease. Genome Biol 2017; 18:77. https://doi.org/10.1186/s13059-017-1212-4.
doi: 10.1186/s13059-017-1212-4
|
[24] |
Albujja MH, Vasudevan R, Alghamdi S, Pei CP, Bin Mohd Ghani KA, Ranneh Y, et al. A review of studies examining the association between genetic biomarkers (short tandem repeats and single-nucleotide polymorphisms) and risk of prostate cancer: the need for valid predictive biomarkers. Prostate Int 2020; 8:135-45.
doi: 10.1016/j.prnil.2019.11.003
pmid: 33425790
|
[25] |
Dai X, Fang X, Ma Y, Xianyu J. Benign prostatic hyperplasia and the risk of prostate cancer and bladder cancer: a metaanalysis of observational studies. Medicine (Baltimore) 2016; 95:e3493. https://doi.org/10.1097/MD.0000000000003493.
doi: 10.1097/MD.0000000000003493
|
[26] |
Robbins C, Torres JB, Hooker S, Bonilla C, Hernandez W, Candreva A, et al. Confirmation study of prostate cancer risk variants at 8q24 in African Americans identifies a novel risk locus. Genome Res 2007; 17:1717-22.
doi: 10.1101/gr.6782707
pmid: 17978284
|
[27] |
Chen M, Huang YC, Yang S, Hsu JM, Chang YH, Huang WJ, et al. Common variants at 8q24 are associated with prostate cancer risk in Taiwanese men. Prostate 2010; 70:502-7.
doi: 10.1002/pros.21084
pmid: 19908238
|
[28] |
Cui Z, Gao M, Yin Z, Yan L, Cui L. Association between lncRNA CASC8 polymorphisms and the risk of cancer: a meta-analysis. Cancer Manag Res 2018; 10:3141-8.
doi: 10.2147/CMAR
|
[29] |
Cheng I, Plummer SJ, Jorgenson E, Liu X, Rybicki BA, Casey G, et al. 8q24 and prostate cancer: association with advanced disease and meta-analysis. Eur J Hum Genet 2008; 16:496-505.
doi: 10.1038/sj.ejhg.5201959
pmid: 18231127
|
[30] |
Cheng I, Plummer SJ, Neslund-Dudas C, Klein EA, Casey G, Rybicki BA, et al. Prostate cancer susceptibility variants confer increased risk of disease progression. Cancer Epidemiol Biomarkers Prev 2010; 19:2124-32.
doi: 10.1158/1055-9965.EPI-10-0268
|
[31] |
Jung YS, Wang W, Jun S, Zhang J, Srivastava M, Kim MJ, et al. Deregulation of CRAD-controlled cytoskeleton initiates mucinous colorectal cancer via b-catenin. Nat Cell Biol 2018; 20:1303-14.
doi: 10.1038/s41556-018-0215-z
|
[32] |
Liu M, Wang J, Xu Y, Wei D, Shi X, Yang Z. Risk loci on chromosome 8q24 are associated with prostate cancer in northern Chinese men. J Urol 2012; 187:315-21.
doi: 10.1016/j.juro.2011.09.011
pmid: 22099997
|
[33] |
Zheng SL, Sun J, Wiklund F, Smith S, Stattin P, Li G, et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med 2008; 358:910-9.
doi: 10.1056/NEJMoa075819
|
[34] |
Wokolorczyk D, Gliniewicz B, Sikorski A, Zlowocka E, Masojc B, Debniak T, et al. A range of cancers is associated with the rs6983267 marker on chromosome 8. Cancer Res 2008; 68:9982-6.
doi: 10.1158/0008-5472.CAN-08-1838
pmid: 19047180
|
[35] |
Duggan D, Zheng SL, Knowlton M, Benitez D, Dimitrov L, Wiklund F, et al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst 2007; 99:1836-44.
doi: 10.1093/jnci/djm250
pmid: 18073375
|
[36] |
Xu J, Zheng SL, Isaacs SD, Wiley KE, Wiklund F, Sun J, et al. Inherited genetic variant predisposes to aggressive but not indolent prostate cancer. Proc Natl Acad Sci U S A 2010; 107:2136-40.
doi: 10.1073/pnas.0914061107
|
[1] |
Michele Marchioni, Giulia Primiceri, Alessandro Veccia, Marta Di Nicola, Umberto Carbonara, Fabio Crocerossa, Ugo Falagario, Ambra Rizzoli, Riccardo Autorino, Luigi Schips. Transurethral prostate surgery in prostate cancer patients: A population-based comparative analysis of complication and mortality rates[J]. Asian Journal of Urology, 2024, 11(1): 48-54. |
[2] |
Jonathan Noël, Daniel Stirt, Marcio Covas Moschovas, Sunil Reddy, Abdel Rahman Jaber, Marco Sandri, Seetharam Bhat, Travis Rogers, Subuhee Ahmed, Anya Mascarenhas, Ela Patel, Vipul Patel. Oncologic outcomes with and without amniotic membranes in robotic-assisted radical prostatectomy: A propensity score matched analysis[J]. Asian Journal of Urology, 2024, 11(1): 19-25. |
[3] |
Anthony Franklin, Troy Gianduzzo, Boon Kua, David Wong, Louise McEwan, James Walters, Rachel Esler, Matthew J. Roberts, Geoff Coughlin, John W. Yaxley. The risk of prostate cancer on incidental finding of an avid prostate uptake on 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography for non-prostate cancer-related pathology: A single centre retrospective study[J]. Asian Journal of Urology, 2024, 11(1): 33-41. |
[4] |
Randi M. Pose, Sophie Knipper, Jonas Ekrutt, Mara Kölker, Pierre Tennstedt, Hans Heinzer, Derya Tilki, Florian Langer, Markus Graefen. Prevention of thromboembolic events after radical prostatectomy in patients with hereditary thrombophilia due to a factor V Leiden mutation by multidisciplinary coagulation management[J]. Asian Journal of Urology, 2024, 11(1): 42-47. |
[5] |
Enrico Checcucci, Alberto Piana, Gabriele Volpi, Pietro Piazzolla, Daniele Amparore, Sabrina De Cillis, Federico Piramide, Cecilia Gatti, Ilaria Stura, Enrico Bollito, Federica Massa, Michele Di Dio, Cristian Fiori, Francesco Porpiglia. Three-dimensional automatic artificial intelligence driven augmented-reality selective biopsy during nerve-sparing robot-assisted radical prostatectomy: A feasibility and accuracy study[J]. Asian Journal of Urology, 2023, 10(4): 407-415. |
[6] |
Roxana Ramos-Carpinteyro, Ethan L. Ferguson, Jaya S. Chavali, Albert Geskin, Jihad Kaouk. First 100 cases of transvesical single-port robotic radical prostatectomy[J]. Asian Journal of Urology, 2023, 10(4): 416-422. |
[7] |
Umberto Carbonara, Giuseppe Lippolis, Luciano Rella, Paolo Minafra, Giuseppe Guglielmi, Antonio Vitarelli, Giuseppe Lucarelli, Pasquale Ditonno. Intermediate-term oncological and functional outcomes in prostate cancer patients treated with perineal robot-assisted radical prostatectomy: A single center analysis[J]. Asian Journal of Urology, 2023, 10(4): 423-430. |
[8] |
Angelo Territo, Alessandro Uleri, Andrea Gallioli, Josep Maria Gaya, Paolo Verri, Giuseppe Basile, Alba Farré, Alejandra Bravo, Alessandro Tedde, Óscar Rodríguez Faba, Joan Palou, Alberto Breda. Robot-assisted oncologic pelvic surgery with Hugo™ robot-assisted surgery system: A single-center experience[J]. Asian Journal of Urology, 2023, 10(4): 461-466. |
[9] |
Thomas Whish-Wilson, Jo-Lynn Tan, William Cross, Lih-Ming Wong, Tom Sutherland. Prostate magnetic resonance imaging and the value of experience: An intrareader variability study[J]. Asian Journal of Urology, 2023, 10(4): 488-493. |
[10] |
Thitipat Hansomwong, Pat Saksirisampant, Sudhir Isharwal, Pubordee Aussavavirojekul, Varat Woranisarakul, Siros Jitpraphai, Sunai Leewansangtong, Tawatchai Taweemonkongsap, Sittiporn Srinualnad. Role of preoperative magnetic resonance imaging on the surgical outcomes of radical prostatectomy: Does preoperative tumor recognition reduce the positive surgical margin in a specific location? Experience from a Thailand prostate cancer specialized center[J]. Asian Journal of Urology, 2023, 10(4): 494-501. |
[11] |
Kerri R. Beckmann, Michael E. O'Callaghan, Andrew D. Vincent, Kim L. Moretti, Nicholas R. Brook. Clinical outcomes for men with positive surgical margins after radical prostatectomy—results from the South Australian Prostate Cancer Clinical Outcomes Collaborative community-based registry[J]. Asian Journal of Urology, 2023, 10(4): 502-511. |
[12] |
Wei He,Yutian Xiao,Shi Yan,Yasheng Zhu,Shancheng Ren. Cell-free DNA in the management of prostate cancer: Current status and future prospective[J]. Asian Journal of Urology, 2023, 10(3): 298-316. |
[13] |
Shulin Wu,Sharron X. Lin,Kristine M. Cornejo,Rory K. Crotty,Michael L. Blute,Douglas M. Dahl,Chin-Lee Wu. Clinicopathological and oncological significance of persistent prostate-specific antigen after radical prostatectomy: A systematic review and meta-analysis[J]. Asian Journal of Urology, 2023, 10(3): 317-328. |
[14] |
Stefano Alba,Deborah Fimognari,Fabio Crocerossa,Luigi Ascalone,Carmine Pullano,Fernando Chiaravalloti,Francesco Chiaradia,Umberto Carbonara,Matteo Ferro,Ottavio de Cobelli,Vincenzo Pagliarulo,Giuseppe Lucarelli,Michele Battaglia,Rocco Damiano,Francesco Cantiello. Neuraxial anesthesia versus general anesthesia in patients undergoing three-dimensional laparoscopic radical prostatectomy: Preliminary results of a prospective comparative study[J]. Asian Journal of Urology, 2023, 10(3): 329-336. |
[15] |
Fabricio B. Carrerette,Daniela B. Rodeiro,Rui T. F. Filho,Paulo A. Santos,Celso C. Lara,Ronaldo Damião. Randomized controlled trial comparing open anterograde anatomic radical retropubic prostatectomy with retrograde technique[J]. Asian Journal of Urology, 2023, 10(2): 151-157. |
|
|
|
|