|
|
Proposal for pathogenesis-based treatment options to reduce calcium oxalate stone recurrence |
Saeed R. Khana,*( ),Benjamin K. Canalesb
|
a Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA b Department of Urology, University of Florida, Gainesville, FL, USA |
|
|
Abstract Objective Prevalence of kidney stone disease continues to increase globally with recurrence rates between 30% and 50% despite technological and scientific advances. Reduction in recurrence would improve patient outcomes and reduce cost and stone morbidities. Our objective was to review results of experimental studies performed to determine the efficacy of readily available compounds that can be used to prevent recurrence. Methods All relevant literature up to October 2020, listed in PubMed is reviewed. Results Clinical guidelines endorse the use of evidence-based medications, such as alkaline agents and thiazides, to reduce urinary mineral supersaturation and recurrence. However, there may be additional steps during stone pathogenesis where medications could moderate stone risk. Idiopathic calcium oxalate stones grow attached to Randall’s plaques or plugs. Results of clinical and experimental studies suggest involvement of reactive oxygen species and oxidative stress in the formation of both the plaques and plugs. The renin-angiotensin-aldosterone system (RAAS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mitochondria, and NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome have all been implicated at specific steps during stone pathogenesis in animal models. Conclusion In addition to supersaturation-reducing therapies, the use of anti-oxidants, free radical scavengers, and inhibitors of NADPH oxidase, NLRP3 inflammasome, and RAAS may prove beneficial for stone prevention. Compounds such as statins and angiotensin converting enzyme inhibitors are already in use as therapeutics for hypertension and cardio-vascular disease and have previously shown to reduce calcium oxalate nephrolithiasis in rats. Although clinical evidence for their use in stone prevention in humans is limited, experimental data support they be considered along with standard evidence-based medications and clinical expertise when patients are being counselled for stone prevention.
|
Received: 06 September 2022
Available online:
|
Corresponding Authors:
Saeed R. Khan
E-mail: khan@pathology.ufl.edu
|
|
|
Drug name | Mechanism of action | Indication | Potential use/benefit in stone formers | Atorvastatin | -HMG-CoA reductase competitive inhibitor | -Elevated serum total cholesterol, LDL cholesterol, or high triglycerides | -Reduced oxidative stress and CaOx crystal deposition by inhibiting NLRP3 inflammasome | Losartan | -Angiotensin II type 1 receptor antagonist | -Hypertension, reduce stroke risk, or diabetic nephropathy | -Reduced oxidative stress, anti-inflammatory effect by blocking angiotensin-1 receptor | Apocynin | -Selective inhibitor of phagocyte NADPH oxidase | -Plant-based, dietary supplement with few publications in humans | -Inhibition of ROS generation by NADPH oxidases and ROS scavenging | Lisinopril | -ACE inhibitor | -Acute myocardial infarction, heart failure, or hypertension | -Reduced expression of pro-inflammatory cytokines and attenuated cell activation (in particular macrophages) | Cyclosporine A | -Calcineurin inhibition, impaired T-cell activity | -Solid organ rejection, prophylaxis or rejection, or autoimmune diseases | -Selective inhibition of T-cell proliferation and macrophage-mediated accumulation in kidney | Spironolactone | -Mineralocorticoid receptor antagonist and diuretic | -Hypertension, or heart failure | -Reduced oxidative stress and reduced expression of pro-inflammatory cytokines |
|
Prescription drugs or supplements that may benefit kidney stone formers.
|
[1] |
Khan SR, Canales BK, Dominguez-Gutierrez PR. Randall's plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol 2021; 17:417-33.
doi: 10.1038/s41581-020-00392-1
pmid: 33514941
|
[2] |
Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. Kidney stones. Nat Rev Dis Prim 2016; 2:16008. https://doi.org/10.1038/nrdp.2016.8.
|
[3] |
Eisner BH, Goldfarb DS. A nomogram for the prediction of kidney stone recurrence. J Am Soc Nephrol 2014; 25:2685-7.
doi: 10.1681/ASN.2014060631
pmid: 25104802
|
[4] |
Daudon M, Jungers P. Diabetes and nephrolithiasis. Curr Diabetes Rep 2007; 7:443-8.
doi: 10.1007/s11892-007-0075-6
pmid: 18255008
|
[5] |
Obligado SH, Goldfarb DS. The association of nephrolithiasis with hypertension and obesity: a review. Am J Hypertens 2008; 21:257-64.
doi: 10.1038/ajh.2007.62
pmid: 18219300
|
[6] |
West B, Luke A, Durazo-Arvizu RA, Cao G, Shoham D, Kramer H.Metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition examination Survey (NHANES III) 1988-1994. Am J Kidney Dis 2008; 51: 741-7.
doi: 10.1053/j.ajkd.2007.12.030
|
[7] |
Shoag J, Halpern J, Goldfarb DS, Eisner BH. Risk of chronic and end stage kidney disease in patients with nephrolithiasis. J Urol 2014; 192:1440-5.
doi: 10.1016/j.juro.2014.05.117
pmid: 24929140
|
[8] |
Finlayson B. Physicochemical aspects of urolithiasis. Kidney Int 1978; 13:344-60.
pmid: 351263
|
[9] |
Kok DJ, Khan SR. Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 1994; 46:847-54.
pmid: 7996806
|
[10] |
Khan SR, Kok DJ. Modulators of urinary stone formation. Front Biosci 2004; 9:1450-82.
doi: 10.2741/1347
|
[11] |
Finlayson B, Reid F. The expectation of free and fixed particles in urinary stone disease. Invest Urol 1978; 15:442-8.
pmid: 649291
|
[12] |
Rodgers AL. Physicochemical mechanisms of stone formation. Urolithiasis 2017; 45:27-32.
doi: 10.1007/s00240-016-0942-1
pmid: 27928586
|
[13] |
Rodgers AL. Urinary saturation: casual or causal risk factor in urolithiasis? BJU Int 2014; 114:104-10.
doi: 10.1111/bju.12481
pmid: 24119074
|
[14] |
Evan A, Lingeman J, Coe FL, Worcester E. Randall's plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 2006; 69:1313-8.
doi: 10.1038/sj.ki.5000238
pmid: 16614720
|
[15] |
Williams Jr JC, Al-Awadi H, Muthenini M, Bledsoe SB, El-Achkar T, Evan AP, et al. Stone morphology distinguishes two pathways of idiopathic calcium oxalate stone pathogenesis. J Endourol 2022; 36:694-702.
doi: 10.1089/end.2021.0685
|
[16] |
Khan SR, Rodriguez DE, Gower LB, Monga M. Association of Randall plaque with collagen fibers and membrane vesicles. J Urol 2012; 187:1094-100.
doi: 10.1016/j.juro.2011.10.125
pmid: 22266007
|
[17] |
Evan AP, Bledsoe S, Worcester EM, Coe FL, Lingeman JE, Bergsland KJ. Renal inter-alpha-trypsin inhibitor heavy chain 3 increases in calcium oxalate stone-forming patients. Kidney Int 2007; 72:1503-11.
pmid: 17898697
|
[18] |
Carpentier X, Bazin D, Combes C, Mazouyes A, Rouzière S, Albouy PA, et al. High Zn content of Randall's plaque: a u-Xray fluorescence investigation. J Trace Elem Med Biol 2011; 25:160-5.
doi: 10.1016/j.jtemb.2011.05.004
pmid: 21763116
|
[19] |
Khan SR, Finlayson B, Hackett R. Renal papillary changes in patient with calcium oxalate lithiasis. Urology 1984; 23: 194-9.
pmid: 6695491
|
[20] |
Taguchi K, Hamamoto S, Okada A, Unno R, Kamisawa H, Naiki T, et al. Genome-wide gene expression profiling of Randall's plaques in calcium oxalate stone formers. J Am Soc Nephrol 2017; 28:333-47.
doi: 10.1681/ASN.2015111271
pmid: 27297950
|
[21] |
Taguchi K, Okada A, Hamamoto S, Unno R, Moritoki Y, Ando R, et al. M1/M2-macrophage phenotypes regulate renal calcium oxalate crystal development. Sci Rep 2016;6:35167. https://doi.org/10.1038/srep35167.
|
[22] |
Sun AY, Hinck B, Cohen BR, Keslar K, Fairchild RL, Monga M. Inflammatory cytokines in the papillary tips and urine of nephrolithiasis patients. J Endourol 2018; 32: 236-44.
doi: 10.1089/end.2017.0699
pmid: 29338314
|
[23] |
Coe FL, Evan AP, Lingeman JE, Worcester EM. Plaque and deposits in nine human stone diseases. Urol Res 2010; 38: 239-47.
doi: 10.1007/s00240-010-0296-z
pmid: 20625890
|
[24] |
Huguet L, Le Dudal M, Livrozet M, Bazin D, Frochot V, Perez J, et al. High frequency and wide range of human kidney papillary crystalline plugs. Urolithiasis 2018; 46: 333-41.
doi: 10.1007/s00240-017-1031-9
pmid: 29234857
|
[25] |
Khan SR, Atmani F, Glenton P, Hou Z, Talham DR, Khurshid M. Lipids and membranes in the organic matrix of urinary calcific crystals and stones. Calcif Tissue Int 1996; 59:357-65.
doi: 10.1007/s002239900140
|
[26] |
Witzmann FA, Evan AP, Coe FL, Worcester EM, Lingeman JE, Williams JC Jr. Label-free proteomic methodology for the analysis of human kidney stone matrix composition. Proteome Sci 2016; 14:4. https://doi.org/10.1186/s12953-016-0093-x.
doi: 10.1186/s12953-016-0093-x
pmid: 26924944
|
[27] |
Canales BK, Anderson L, Higgins L, Ensrud-Bowlin K, Roberts KP, Wu B, et al. Proteome of human calcium kidney stones. Urology 2010; 76:1017.e13-20. https://doi.org/10.1016/j.urology.2010.05.005.
|
[28] |
Merchant ML, Cummins TD, Wilkey DW, Salyer SA, Powell DW, Klein JB, et al. Proteomic analysis of renal calculi indicates an important role for inflammatory processes in calcium stone formation. Am J Physiol Ren Physiol 2008; 295:F1254-8. https://doi.org/10.1152/ajprenal.00134.2008.
doi: 10.1152/ajprenal.00134.2008
|
[29] |
Okumura N, Tsujihata M, Momohara C, Yoshioka I, Suto K, Nonomura N, et al. Diversity in protein profiles of individual calcium oxalate kidney stones. PLoS One 2013; 8:e68624. https://doi.org/10.1371/journal.pone.0068624.
doi: 10.1371/journal.pone.0068624
|
[30] |
Boonla C, Tosukhowong P, Spittau B, Schlosser A, Pimratana C, Krieglstein K. Inflammatory and fibrotic proteins proteomically identified as key protein constituents in urine and stone matrix of patients with kidney calculi. Clin Chim Acta 2014; 429:81-9.
doi: 10.1016/j.cca.2013.11.036
pmid: 24333391
|
[31] |
Khan SR, Hackett RL. Role of organic matrix in urinary stone formation: an ultrastructural study of crystal matrix interface of calcium oxalate monohydrate stones. J Urol 1993; 150:239-45.
doi: 10.1016/s0022-5347(17)35454-x
pmid: 8510264
|
[32] |
Khan SR, Shevock PN, Hackett RL. Presence of lipids in urinary stones: results of preliminary studies. Calcif Tissue Int 1988; 42:91-6.
doi: 10.1007/BF02556340
|
[33] |
McKee MD, Nanci A, Khan SR. Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res 1995; 10: 1913-29.
pmid: 8619372
|
[34] |
Romero V, Akpinar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol 2010; 12:e86-96. PMCID: PMC2931286.
pmid: 20811557
|
[35] |
Scales CD Jr, Curtis LH, Norris RD, Springhart WP, Sur RL, Schulman KA, et al. Changing gender prevalence of stone disease. J Urol 2007; 177:979-82.
doi: 10.1016/j.juro.2006.10.069
pmid: 17296391
|
[36] |
Siener R, Herwig H, Rudy J, Schaefer RM, Lossin P, Hesse A. Urinary stone composition in Germany: results from 45 783 stone analyses. World J Urol 2022; 40:1813-20.
doi: 10.1007/s00345-022-04060-w
|
[37] |
Dinan MA, Robinson TJ, Zagar TM, Scales CD Jr, Curtis LH, Reed SD, et al. Changes in initial treatment for prostate cancer among Medicare beneficiaries, 1999-2007. Int J Radiat Oncol Biol Phys 2012; 82:e781-6. https://doi.org/10.1016/j.ijrobp.2011.11.024.
doi: 10.1016/j.ijrobp.2011.11.024
|
[38] |
Rodgers A, Allie-Hamdulay S, Pinnock D, Baretta G, Trinchieri A. Risk factors for renal calcium stone formation in South African and European young adults. Arch Ital Urol Androl 2009; 81:171-4.
|
[39] |
Rodgers AL. Race, ethnicity and urolithiasis: a critical review. Urolithiasis 2013; 41:99-103.
doi: 10.1007/s00240-012-0516-9
pmid: 23503870
|
[40] |
Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC. Time trends in reported prevalence of kidney stones in the United States: 1976e1994. Kidney Int 2003; 63:1817-23.
doi: 10.1046/j.1523-1755.2003.00917.x
pmid: 12675858
|
[41] |
Strazzullo P, Barba G, Vuotto P, Farinaro E, Siani A, Nunziata V, et al. Past history of nephrolithiasis and incidence of hypertension in men: a reappraisal based on the results of the Olivetti Prospective Heart Study. Nephrol Dial Transplant 2001; 16:2232-5.
doi: 10.1093/ndt/16.11.2232
|
[42] |
Beck BB, Baasner A, Buescher A, Habbig S, Reintjes N, Kemper MJ, et al. Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies. Eur J Hum Genet 2013; 21: 162-72.
doi: 10.1038/ejhg.2012.139
pmid: 22781098
|
[43] |
Hsi RS, Spieker AJ, Stoller ML, Jacobs Jr DR, Reiner AP, McClelland RL, et al. Coronary artery calcium score and association with recurrent nephrolithiasis: the multi-ethnic study of atherosclerosis. J Urol 2016; 195:971-6.
doi: 10.1016/j.juro.2015.10.001
pmid: 26454103
|
[44] |
Liu Y, Li S, Zeng Z, Wang J, Xie L, Li T, et al. Kidney stones and cardiovascular risk: a meta-analysis of cohort studies. Am J Kidney Dis 2014; 64:402-10.
doi: 10.1053/j.ajkd.2014.03.017
pmid: 24797522
|
[45] |
Ferraro PM, Taylor EN, Eisner BH, Gambaro G, Rimm EB, Mukamal KJ, et al. History of kidney stones and the risk of coronary heart disease. JAMA 2013; 310:408-15.
|
[46] |
Siener R. Nutrition and kidney stone disease. Nutrients 2021; 13:1917. https://doi.org/10.3390/nu13061917.
|
[47] |
Ferraro PM, Cunha TDS, Taylor EN, Curhan GC. Temporal trends of dietary risk factors after a diagnosis of kidney stones. Clin J Am Soc Nephrol 2022; 17:83-9.
doi: 10.2215/CJN.09200721
|
[48] |
Crivelli JJ, Mitchell T, Knight J, Wood KD, Assimos DG, Holmes RP, et al. Contribution of dietary oxalate and oxalate precursors to urinary oxalate excretion. Nutrients 2020; 13: 62. https://doi.org/10.3390/nu13010062.
doi: 10.3390/nu13010062
|
[49] |
Ticinesi A, Nouvenne A, Chiussi G, Castaldo G, Guerra A, Meschi T. Calcium oxalate nephrolithiasis and gut microbiota: not just a gut-kidney axis. A nutritional perspective. Nutrients 2020; 12:548. https://doi.org/10.3390/nu12020548.
doi: 10.3390/nu12020548
|
[50] |
Allison MJ, Cook HM, Milne DB, Gallagher S, Clayman RV. Oxalate degradation by gastrointestinal bacteria from humans. J Nutr 1986; 116:455-60.
|
[51] |
Sidhu H, Schmidt ME, Cornelius JG, Thamilselvan S, Khan SR, Hesse A, et al. Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy. J Am Soc Nephrol 1999; 10(Suppl. 14):S334-40. PMID: 10541258.
|
[52] |
Tavasoli S, Alebouyeh M, Naji M, Majd GS, Nashtaei MS, Broumandnia N, et al. Association of intestinal oxalatedegrading bacteria with recurrent calcium kidney stone formation and hyperoxaluria: a case-control study. BJU Int 2020; 125:133-43.
doi: 10.1111/bju.14840
pmid: 31145528
|
[53] |
Miller AW, Choy D, Penniston KL, Lange D. Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney Int 2019; 96: 180-8.
doi: S0085-2538(19)30231-5
pmid: 31130222
|
[54] |
Milliner D, Hoppe B, Groothoff J. A randomised Phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 2018; 46:313-23.
doi: 10.1007/s00240-017-0998-6
pmid: 28718073
|
[55] |
Miller AW, Penniston KL, Fitzpatrick K, Agudelo J, Tasian G, Lange D. Mechanisms of the intestinal and urinary microbiome in kidney stone disease. Nat Rev Urol 2022; 19: 695-707.
doi: 10.1038/s41585-022-00647-5
pmid: 36127409
|
[56] |
Kok DJ, Iestra JA, Doorenbos CJ, Papapoulos SE. The effects of dietary excesses in animal protein and in sodium on the composition and the crystallization kinetics of calcium oxalate monohydrate in urines of healthy men. J Clin Endocrinol Metab 1990; 71:861-7.
doi: 10.1210/jcem-71-4-861
|
[57] |
Reddy ST, Wang CY, Sakhaee K, Brinkley L, Pak CY. Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism. Am J Kidney Dis 2002; 40:265-74.
pmid: 12148098
|
[58] |
Giannini S, Nobile M, Sartori L, Carbonare DL, Ciuffreda M, Corrò P, et al. Acute effects of moderate dietary protein restriction in patients with idiopathic hypercalciuria and calcium nephrolithiasis. Am J Clin Nutr 1999; 69:267-71.
pmid: 9989691
|
[59] |
Nouvenne A, Meschi T, Prati B, Guerra A, Allegri F, Vezzoli G, et al. Effects of a low-salt diet on idiopathic hypercalciuria in calcium-oxalate stone formers: a 3-mo randomized controlled trial. Am J Clin Nutr 2010; 91:565-70.
doi: 10.3945/ajcn.2009.28614
pmid: 20042524
|
[60] |
Taylor EN, Curhan GC. Dietary calcium from dairy and nondairy sources, and risk of symptomatic kidney stones. J Urol 2013; 190:1255-9.
doi: 10.1016/j.juro.2013.03.074
pmid: 23535174
|
[61] |
Lopes HF, Martin KL, Nashar K, Morrow JD, Goodfriend TL, Egan BM. DASH diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension 2003; 41:422-30.
doi: 10.1161/01.HYP.0000053450.19998.11
pmid: 12623938
|
[62] |
Taylor EN, Fung TT, Curhan GC. DASH-style diet associates with reduced risk for kidney stones. J Am Soc Nephrol 2009; 20:2253-9.
doi: 10.1681/ASN.2009030276
pmid: 19679672
|
[63] |
Holoch PA, Tracy CR. Antioxidants and self-reported history of kidney stones: the National Health and Nutrition Examination Survey. J Endourol 2011; 25:1903-8.
doi: 10.1089/end.2011.0130
pmid: 21864023
|
[64] |
Shioi A, Ikari Y. Plaque calcification during atherosclerosis progression and regression. J Atherosclerosis Thromb 2018; 25:294-303.
doi: 10.5551/jat.RV17020
|
[65] |
Patel M, Yarlagadda V, Adedoyin O, Saini V, Assimos DG, Holmes RP, et al. Oxalate induces mitochondrial dysfunction and disrupts redox homeostasis in a human monocyte derived cell line. Redox Biol 2018; 15:207-15.
doi: S2213-2317(17)30756-5
pmid: 29272854
|
[66] |
Niimi K, Yasui T, Hirose M, Hamamoto S, Itoh Y, Okada A, et al. Mitochondrial permeability transition pore opening induces the initial process of renal calcium crystallization. Free Radic Biol Med 2012; 52:1207-17.
doi: 10.1016/j.freeradbiomed.2012.01.005
|
[67] |
Cohen AJ, Adamsky MA, Nottingham CU, Pruitt J, Lapin B, Wang CH, et al. Impact of statin intake on kidney stone formation. Urology 2019; 124:57-61.
doi: S0090-4295(18)30083-9
pmid: 29421299
|
[68] |
Peng Y, Fang Z, Liu M, Wang Z, Li L, Ming S, et al. Testosterone induces renal tubular epithelial cell death through the HIF-1a/BNIP3 pathway. J Transl Med 2019;17:62. https://doi.org/10.1186/s12967-019-1821-7.
|
[69] |
Huang F, Li Y, Cui Y, Zhu Z, Chen J, Zeng F, et al. Relationship between serum testosterone levels and kidney stones prevalence in men. Front Endocrinol 2022; 13:863675. https://doi.org/10.3389/fendo.2022.863675.
doi: 10.3389/fendo.2022.863675
|
[70] |
Shakhssalim N, Gilani KR, Parvin M, Torbati PM, Kashi AH, Azadvari M, et al. An assessment of parathyroid hormone, calcitonin, 1,25 (OH)2 vitamin D3, estradiol and testosterone in men with active calcium stone disease and evaluation of its biochemical risk factors. Urol Res 2011;39:1-7.
|
[71] |
Li JY, Zhou T, Gao X, Xu C, Sun Y, Peng Y, et al. Testosterone and androgen receptor in human nephrolithiasis. J Urol 2010; 184:2360-3.
doi: 10.1016/j.juro.2010.08.009
|
[72] |
Basiri A, Naji M, Houshmand M, Shakhssalim N, Golestan B, Azadvari M, et al. CAG repeats and one polymorphism in androgen receptor gene are associated with renal calcium stone disease. Urologia 2022; 89:391-6.
doi: 10.1177/03915603211017885
|
[73] |
Galán-Llopis JA, Sánchez-Pellicer P, Navarro-López V. Role of microbiome in kidney stone disease. Curr Opin Urol 2023;33: 84-9.
|
[74] |
Xie J, Huang JS, Huang XJ, Peng JM, Yu Z, Yuan YQ, et al. Profiling the urinary microbiome in men with calcium-based kidney stones. BMC Microbiol 2020; 20:41. https://doi.org/10.1186/s12866-020-01734-6.
doi: 10.1186/s12866-020-01734-6
pmid: 32111156
|
[75] |
Kachroo N, Monga M, Miller AW. Comparative functional analysis of the urinary tract microbiome for individuals with or without calcium oxalate calculi. Urolithiasis 2022; 50: 303-17.
doi: 10.1007/s00240-022-01314-5
pmid: 35234986
|
[76] |
Gao H, Lin J, Xiong F, Yu Z, Pan S, Huang Y. Urinary microbial and metabolomic profiles in kidney stone disease. Front Cell Infect Microbiol 2022; 12:953392. https://doi.org/10.3389/fcimb.2022.953392.
doi: 10.3389/fcimb.2022.953392
|
[77] |
Khan SR. Nephrocalcinosis in animal models with and without stones. Urol Res 2010; 38:429-38.
doi: 10.1007/s00240-010-0303-4
pmid: 20658131
|
[78] |
Khan SR. Animal models of kidney stone formation: an analysis. World J Urol 1997; 15:236-43.
doi: 10.1007/BF01367661
pmid: 9280052
|
[79] |
Khan SR, Glenton PA, Byer KJ. Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-L-proline. Kidney Int 2006; 70: 914-23.
pmid: 16850024
|
[80] |
Zuo J, Khan A, Glenton PA, Khan SR. Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-L-prolineinduced hyperoxaluria in the male Sprague-Dawley rats. Nephrol Dial Transplant 2011; 26:1785-96.
doi: 10.1093/ndt/gfr035
|
[81] |
Thamilselvan S, Menon M. Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. BJU Int 2005; 96:117-26.
pmid: 15963133
|
[82] |
Huang HS, Ma MC, Chen J, Chen CF. Changes in the oxidantantioxidant balance in the kidney of rats with nephrolithiasis induced by ethylene glycol. J Urol 2002; 167:2584-93.
doi: 10.1016/S0022-5347(05)65042-2
|
[83] |
Umekawa T, Hatanaka Y, Kurita T, Khan SR. Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys. J Am Soc Nephrol 2004; 15:635-44.
doi: 10.1097/01.asn.0000113321.49771.2d
pmid: 14978165
|
[84] |
Tsujihata M, Yoshioka I, Tsujimura A, Nonomura N, Okuyama A. Why does atorvastatin inhibit renal crystal retention? Urol Res 2011; 39:379-83.
doi: 10.1007/s00240-011-0370-1
pmid: 21400107
|
[85] |
Martinon F. Signaling by ROS drives inflammasome activation. Eur J Immunol 2010; 40:616-9.
doi: 10.1002/eji.200940168
pmid: 20201014
|
[86] |
Liu Y, Sun Y, Kang J, He Z, Liu Q, Wu J, et al. Role of ROS-induced NLRP 3 inflammasome activation in the formation of calcium oxalate nephrolithiasis. Front Immunol 2022; 13:818625. https://doi.org/10.3389/fimmu.2022.818625.
doi: 10.3389/fimmu.2022.818625
|
[87] |
Mulay SR, Kulkarni OP, Rupanagudi KV, Migliorini A, Darisipudi MN, Vilaysane A, et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. J Clin Invest 2013;123:236-46.
|
[88] |
Knauf F, Asplin JR, Granja I, Schmidt IM, Moeckel GW, David RJ, et al. NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int 2013; 84:895-901.
doi: 10.1038/ki.2013.207
pmid: 23739234
|
[89] |
Joshi S, Wang W, Peck AB, Khan SR. Activation of the NLRP3 inflammasome in association with calcium oxalate crystal induced reactive oxygen species in kidneys. J Urol 2015; 193: 1684-91.
doi: 10.1016/j.juro.2014.11.093
pmid: 25437532
|
[90] |
Sun Y, Liu Y, Guan X, Kang J, Wang X, Liu Q, et al. Atorvastatin inhibits renal inflammatory response induced by calcium oxalate crystals via inhibiting the activation of TLR4/NF-kappaB and NLRP3 inflammasome. IUBMB Life 2020;72:1065-74.
|
[91] |
Liang L, Li L, Tian J, Lee SO, Dang Q, Huang CK, et al. Androgen receptor enhances kidney stone-CaOx crystal formation via modulation of oxalate biosynthesis & oxidative stress. Mol Endocrinol 2014; 28:1291-303.
doi: 10.1210/me.2014-1047
pmid: 24956378
|
[92] |
Zhu W, Zhao Z, Chou F, Zuo L, Liu T, Yeh S, et al. Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death Dis 2019;10:275. https://doi.org/10.1038/s41419-019-1358-y.
|
[93] |
Anders HJ, Suarez-Alvarez B, Grigorescu M, Foresto-Neto O, Steiger S, Desai J, et al. The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1-mediated tissue injury. Kidney Int 2018;93:656-69.
|
[94] |
Letavernier E, Kauffenstein G, Huguet L, Navasiolava N, Bouderlique E, Tang E, et al. ABCC6 deficiency promotes development of Randall plaque. J Am Soc Nephrol 2018; 29: 2337-47.
doi: 10.1681/ASN.2017101148
pmid: 29991491
|
[95] |
Grewal JS, Tsai JY, Khan SR. Oxalate-inducible AMBP gene and its regulatory mechanism in renal tubular epithelial cells. Biochem J 2005; 387:609-16.
pmid: 15533056
|
[96] |
Okada A, Yasui T, Fujii Y, Niimi K, Hamamoto S, Hirose M, et al. Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: detection by association analysis of stone-related gene expression and microstructural observation. J Bone Miner Res 2010; 25: 2701-11.
doi: 10.1002/jbmr.158
pmid: 20577968
|
[97] |
Khan SR. Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 2004; 8:75-88.
pmid: 15235923
|
[98] |
Khan SR, Joshi S, Wang W, Peck AB. Regulation of macromolecular modulators of urinary stone formation by reactive oxygen species: transcriptional study in an animal model of hyperoxaluria. Am J Physiol Ren Physiol 2014; 306:F1285-95. https://doi.org/10.1152/ajprenal.00057.2014.
doi: 10.1152/ajprenal.00057.2014
|
[99] |
Joshi S, Clapp WL, Wang W, Khan SR. Osteogenic changes in kidneys of hyperoxaluric rats. Biochim Biophys Acta 2015; 1852:2000-12.
doi: 10.1016/j.bbadis.2015.06.020
pmid: 26122267
|
[100] |
Mo L, Liaw L, Evan AP, Sommer AJ, Lieske JC, Wu XR. Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am J Physiol Ren Physiol 2007; 293: F1935-43. https://doi.org/10.1152/ajprenal.00383.2007.
|
[101] |
Liu Y, Mo L, Goldfarb DS, Evan AP, Liang F, Khan SR, et al. Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein. Am J Physiol Ren Physiol 2010; 299:F469-78. https://doi.org/10.1152/ajprenal.00243.2010.
doi: 10.1152/ajprenal.00243.2010
|
[102] |
Umekawa T, Byer K, Uemura H, Khan SR. Diphenyleneiodium (DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushite crystal-induced upregulation of MCP-1 in NRK 52E cells. Nephrol Dial Transplant 2005;20: 870-8.
|
[103] |
Gaspar S, Niculite C, Cucu D, Marcu I. Effect of calcium oxalate on renal cells as revealed by real-time measurement of extracellular oxidative burst. Biosens Bioelectron 2010; 25: 1729-34.
doi: 10.1016/j.bios.2009.12.013
pmid: 20047824
|
[104] |
Khan SR. Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol Res 2005; 33:349-57.
doi: 10.1007/s00240-005-0492-4
pmid: 16292585
|
[105] |
Meimaridou E, Jacobson J, Seddon AM, Noronha-Dutra AA, Robertson WG, Hothersall JS. Crystal and microparticle effects on MDCK cell superoxide production: oxalate-specific mitochondrial membrane potential changes. Free Radic Biol Med 2005; 38:1553-64.
doi: 10.1016/j.freeradbiomed.2005.02.020
|
[106] |
Khan SR, Khan A, Byer KJ. Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals. Nephrol Dial Transplant 2011; 26:1778-85.
doi: 10.1093/ndt/gfq692
|
[107] |
HuangHS, Chen J, Chen CF, MaMC. Vitamin E attenuates crystal formation in rat kidneys: roles of renal tubular cell death and crystallization inhibitors. Kidney Int 2006; 70:699-710.
pmid: 16807540
|
[108] |
Habibzadegah-Tari P, Byer KG, Khan SR. Reactive oxygen species mediated calcium oxalate crystal-induced expression of MCP-1 in HK-2 cells. Urol Res 2006;34:26-36.
|
[109] |
Thamilselvan V, Menon M, Thamilselvan S. Oxalate-induced activation of PKC-alpha and -delta regulates NADPH oxidasemediated oxidative injury in renal tubular epithelial cells. Am J Physiol Ren Physiol 2009; 297:F1399-410. https://doi.org/10.1152/ajprenal.00051.2009.
doi: 10.1152/ajprenal.00051.2009
|
[110] |
Cao LC, Honeyman TW, Cooney R, Kennington L, Scheid CR, Jonassen JA. Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity. Kidney Int 2004; 66:1890-900.
doi: 10.1111/j.1523-1755.2004.00963.x
|
[111] |
Farooq SM, Boppana NB, Devarajan A, Sekaran SD, Shankar EM, Li C, et al. C-phycocyanin confers protection against oxalate-mediated oxidative stress and mitochondrial dysfunctions in MDCK cells. PLoS One 2014; 9:e93056. https://doi.org/10.1371/journal.pone.0093056.
doi: 10.1371/journal.pone.0093056
|
[112] |
Zhang J, Wang Q, Xu C, Lu Y, Hu H, Qin B, et al. MitoTEMPO prevents oxalate induced injury in NRK-52E cells via inhibiting mitochondrial dysfunction and modulating oxidative stress. Oxid Med Cell Longev 2017; 2017:7528090. https://doi.org/10.1155/2017/7528090.
|
[113] |
Kusmartsev S, Dominguez-Gutierrez PR, Canales BK, Bird VG, Vieweg J, Khan SR. Calcium oxalate stone fragment and crystal phagocytosis by human macrophages. J Urol 2016; 195:1143-51.
doi: 10.1016/j.juro.2015.11.048
pmid: 26626217
|
[114] |
Xi J, Chen Y, Jing J, Zhang Y, Liang C, Hao Z, et al. Sirtuin 3 suppresses the formation of renal calcium oxalate crystals through promoting M2 polarization of macrophages. J Cell Physiol 2019;234:11463-73.
|
[115] |
Xi J, Jing J, Zhang Y, Liang C, Hao Z, Zhang L, et al. SIRT3 inhibited the formation of calcium oxalate-induced kidney stones through regulating NRF2/HO-1 signaling pathway. J Cell Biochem 2019;120:8259-71.
|
[116] |
Khan SR. Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol Res 2012; 40:95-112.
doi: 10.1007/s00240-011-0448-9
pmid: 22213019
|
[117] |
Chinetti-Gbaguidi G, Daoudi M, Rosa M, Vinod M, Louvet L, Copin C, et al. Human alternative macrophages populate calcified areas of atherosclerotic lesions and display impaired RANKL-induced osteoclastic bone resorption activity. Circ Res 2017; 121:19-30.
doi: 10.1161/CIRCRESAHA.116.310262
pmid: 28438779
|
[118] |
Newby AC. Metalloproteinases promote plaque rupture and myocardial infarction: a persuasive concept waiting for clinical translation. Matrix Biol 2015; 44e6:157-66.
|
[119] |
Wu Y, Zhang J, Li C, Hu H, Qin B, Wang T, et al. The activation of ROS/NF-kappaB/MMP-9 pathway promotes calcium-induced kidney crystal deposition. Oxid Med Cell Longev 2021; 2021:8836355. https://doi.org/10.1155/2021/8836355.
|
[120] |
Newby AC. Proteinases and plaque rupture: unblocking the road to translation. Curr Opin Lipidol 2014; 25: 358-66.
doi: 10.1097/MOL.0000000000000111
pmid: 25089553
|
[121] |
Joshi S, Peck AB, Khan SR. NADPH oxidase as a therapeutic target for oxalate induced injury in kidneys. Oxid Med Cell Longev 2013; 2013:462361. https://doi.org/10.1155/2013/46361.
|
[122] |
Zahid A, Li B, Kombe AJK, Jin T, Tao J. Pharmacological inhibitors of the NLRP3 inflammasome. Front Immunol 2019; 10: 2538. https://doi.org/10.3389/fimmu.2019.02538.
doi: 10.3389/fimmu.2019.02538
pmid: 31749805
|
[123] |
Garrelfs SF, Frishberg Y, Hulton SA, Koren MJ, O'Riordan WD, Cochat P, et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N Engl J Med 2021; 384: 1216-26.
doi: 10.1056/NEJMoa2021712
|
[124] |
Zinovkin RA, Zamyatnin AA. Mitochondria-targeted drugs. Curr Mol Pharmacol 2019; 12:202-14.
doi: 10.2174/1874467212666181127151059
pmid: 30479224
|
[125] |
Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol 2019; 34:975-91.
doi: 10.1007/s00467-018-4005-4
pmid: 30105414
|
[126] |
Yousefian M, Shakour N, Hosseinzadeh H, Hayes AW, Hadizadeh F, Karimi G. The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine 2019; 55:200-13.
doi: S0944-7113(18)30267-8
pmid: 30668430
|
[127] |
Marchetti C, Swartzwelter B, Gamboni F, Neff CP, Richter K, Azam T, et al. OLT1177, a beta-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci U S A 2018;115:E1530-9. https://doi.org/10.1073/pnas.1716095115.
|
[128] |
Yang S, Yuan HQ, Hao YM, Ren Z, Qu SL, Liu LS, et al. Macrophage polarization in atherosclerosis. Clin Chim Acta 2020; 501:142-6.
doi: S0009-8981(19)32098-4
pmid: 31730809
|
[129] |
Tan HY, Wang N, Li S, Hong M, Wang X, Feng Y. The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases. Oxid Med Cell Longev 2016; 2016:2795090. https://doi.org/10.1155/2016/2795090.
|
[1] |
Yiwei Wang, Liheng Gao, Mingxi Xu, Wenfeng Li, Yuanshen Mao, Fujun Wang, Lu Wang, Jun Da, Zhong Wang. A novel spherical-headed fascial dilator is feasible for second-stage ultrasound guided percutaneous nephrolithotomy: A pilot study[J]. Asian Journal of Urology, 2021, 8(4): 424-429. |
[2] |
Braulio Omar Manzo,Jose David Cabrera,Esteban Emiliani,Hector Manuel Sánchez,Brian Howard Eisner,Jose Ernesto Torres. Impact of the adherence to medical treatment on the main urinary metabolic disorders in patients with kidney stones[J]. Asian Journal of Urology, 2021, 8(3): 275-279. |
[3] |
Paula Andrea Peña,Lynda Torres-Castellanos,Germán Patiño,Stefanía Prada,Luis Gabriel Villarraga,Nicolás Fernández. Minimally invasive nephrectomy for inflammatory renal disease[J]. Asian Journal of Urology, 2020, 7(4): 345-350. |
[4] |
Renee E. Vickman,Omar E. Franco,Daniel C. Moline,Donald J. Vander Griend,Praveen Thumbikat,Simon W. Hayward. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review[J]. Asian Journal of Urology, 2020, 7(3): 191-202. |
[5] |
Igor Sorokin,Margaret S. Pearle. Medical therapy for nephrolithiasis: State of the art[J]. Asian Journal of Urology, 2018, 5(4): 243-255. |
[6] |
Charlimagne M. Montealegre, Rizalinda L. De Leon. Effect of Blumea balsamifera extract on the phase and morphology of calcium oxalate crystals[J]. Asian Journal of Urology, 2017, 4(4): 201-207. |
[7] |
R. Sekar Rishi,Patil Dattatraya,Baum Yoram,Pearl Jeffrey,Bausum Anna,A. Bilen Mehmet,Kucuk Omer,B. Harris Wayne,C. Carthon Bradley,Alemozaffar Mehrdad,P. Filson Christopher,G. Pattaras John,T. Nieh Peter,Ogan Kenneth,A. Master Viraj. A novel preoperative inflammatory marker prognostic score in patients with localized[J]. Asian Journal of Urology, 2017, 4(4): 230-238. |
[8] |
Ho-Yin Ngai, Kar-Kei Steffi Yuen, Chi-Man Ng, Cheung-Hing Cheng, Sau-Kwan Peggy Chu. Metabolic syndrome and benign prostatic hyperplasia:An update[J]. Asian Journal of Urology, 2017, 4(3): 164-173. |
[9] |
Rikiya Taoka, Yoshiyuki Kakehi. The influence of asymptomatic inflammatory prostatitis on the onset and progression of lower urinary tract symptoms in men with histologic benign prostatic hyperplasia[J]. Asian Journal of Urology, 2017, 4(3): 158-163. |
[10] |
Kok Bin Lim. Epidemiology of clinical benign prostatic hyperplasia[J]. Asian Journal of Urology, 2017, 4(3): 148-151. |
[11] |
Antonio Benito Porcaro, Giovanni Novella, Matteo Balzarro, Guido Martignoni, Matteo Brunelli, Giovanni Cacciamani, Maria A. Cerruto, Walter Artibani. Prostate chronic inflammation type IV and prostate cancer risk in patients undergoing first biopsy set: Results of a large cohort study[J]. Asian Journal of Urology, 2015, 2(4): 224-232. |
|
|
|
|