Please wait a minute...
Search Asian J Urol Advanced Search
Share 
Asian Journal of Urology, 2023, 10(4): 494-501    doi: 10.1016/j.ajur.2022.05.012
  本期目录 | 过刊浏览 | 高级检索 |
Role of preoperative magnetic resonance imaging on the surgical outcomes of radical prostatectomy: Does preoperative tumor recognition reduce the positive surgical margin in a specific location? Experience from a Thailand prostate cancer specialized center
Thitipat Hansomwonga*(),Pat Saksirisampantb,Sudhir Isharwalc,Pubordee Aussavavirojekula,Varat Woranisarakula,Siros Jitpraphaia,Sunai Leewansangtonga,Tawatchai Taweemonkongsapa,Sittiporn Srinualnada
aDivision of Urology, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
bDivision of Urology, Department of Surgery, Somdech Phra Pinklao Hospital, Naval Medical Department, Royal Thai Navy, Bangkok, Thailand
cDepartment of Urology, Oregon Health and Science University, Portland, OR, United States
下载:  HTML  PDF (474KB) 
输出:  BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract: 

Objective: Multiparametric magnetic resonance imaging (MRI) has become the standard of care for the diagnosis of prostate cancer patients. This study aimed to evaluate the influence of preoperative MRI on the positive surgical margin (PSM) rates.

Methods: We retrospectively reviewed 1070 prostate cancer patients treated with radical prostatectomy (RP) at Siriraj Hospital between January 2013 and September 2019. PSM rates were compared between those with and without preoperative MRI. PSM locations were analyzed.

Results: In total, 322 (30.1%) patients underwent MRI before RP. PSM most frequently occurred at the apex (33.2%), followed by posterior (13.5%), bladder neck (12.7%), anterior (10.7%), posterolateral (9.9%), and lateral (2.3%) positions. In preoperative MRI, PSM was significantly lowered at the posterior surface (9.0% vs. 15.4%, p=0.01) and in the subgroup of urologists with less than 100 RP experiences (32% vs. 51%, odds ratio=0.51, p<0.05). Blood loss was also significantly decreased when a preoperative image was obtained (200 mL vs. 250 mL, p=0.02). Multivariate analysis revealed that only preoperative MRI status was associated with overall PSM and PSM at the prostatic apex. Neither the surgical approach, the neurovascular bundle sparing technique, nor the perioperative blood loss was associated with PSM.

Conclusion: MRI is associated with less overall PSM, PSM at apex, and blood loss during RP. Additionally, preoperative MRI has shown promise in lowering the PSM rate among urologists who are in the early stages of performing RP.

Key words:  Preoperative magnetic resonance imaging    Prostate cancer    Positive surgical margin    Radical prostatectomy    Apex    Apical positive surgical margin
收稿日期:  2022-01-21      修回日期:  2022-04-22      接受日期:  2022-05-18      出版日期:  2023-10-20      发布日期:  2023-11-13      整期出版日期:  2023-10-20
引用本文:    
. [J]. Asian Journal of Urology, 2023, 10(4): 494-501.
Thitipat Hansomwong, Pat Saksirisampant, Sudhir Isharwal, Pubordee Aussavavirojekul, Varat Woranisarakul, Siros Jitpraphai, Sunai Leewansangtong, Tawatchai Taweemonkongsap, Sittiporn Srinualnad. Role of preoperative magnetic resonance imaging on the surgical outcomes of radical prostatectomy: Does preoperative tumor recognition reduce the positive surgical margin in a specific location? Experience from a Thailand prostate cancer specialized center. Asian Journal of Urology, 2023, 10(4): 494-501.
链接本文:  
http://www.ajurology.com/CN/10.1016/j.ajur.2022.05.012  或          http://www.ajurology.com/CN/Y2023/V10/I4/494
Characteristic Preoperative MRI (n=322) Non-MRI (n=748) p-Value
Agea, year 68.29±6.62 67.59±6.37 0.20
Op-timea, min 182.51±73.11 187.64±77.08 0.36
Blood lossb, mL 200 (20-400) 250 (50-450) 0.02
BMIb, kg/m2 24.61 (22.49-26.89) 24.34 (22.41-26.54) 0.30
iPSAb, ng/mL 10.1 (7.18-18.00) 10.0 (6.70-16.30) 0.41
Tumor involvementb, % 12.0 (5.0-22.0) 15.0 (5.0-25.0) 0.10
Prostate sizea, mL 44.07±22.97 42.77±21.19 0.40
pTc 0.50
2 182 (56.5) 365 (48.8)
3a 102 (31.7) 243 (32.5)
3b 35 (10.9) 130 (17.4)
4 3 (0.9) 10 (1.3)
ISUP groupc 0.07
1 28 (8.7) 91 (12.2)
2 109 (33.9) 261 (34.9)
3 74 (23.0) 136 (18.2)
4 34 (10.6) 61 (8.2)
5 58 (18.0) 106 (14.2)
ADT effect 19 (5.9) 93 (12.4)
Surgical approachc <0.05
ORP 27 (8.4) 98 (13.1)
LRP 61 (18.9) 231 (30.9)
RARP 234 (72.7) 419 (56.0)
Surgeon's experiencec 0.70
1-100 73 (22.7) 178 (23.8)
>100 249 (77.3) 570 (76.2)
NVB sparing techniquec 0.20
None 201 (62.4) 508 (67.9)
Unilateral 28 (8.7) 46 (6.1)
Bilateral 93 (28.9) 194 (25.9)
  
PSM location Total Preoperative MRI Non-MRI p-Value
Apex 355 (33.2) 96 (29.8) 259 (34.6) 0.30
Posterior 144 (13.5) 29 (9.0) 115 (15.4) 0.01
Bladder neck 136 (12.7) 34 (10.6) 102 (13.6) 0.20
Anterior 115 (10.7) 36 (11.2) 79 (10.6) 0.80
Posterolateral 106 (9.9) 32 (9.9) 74 (9.9) 0.70
Lateral 25 (2.3) 6 (1.9) 19 (2.5) 0.50
Overall 532 (49.7) 149 (46.3) 383 (51.2) 0.14
sPSM 271 (25.3) 89 (27.6) 182 (24.3) 0.25
mPSM 261 (24.2) 60 (18.6) 201 (26.9) <0.05
  
Clinical and pathological characteristics Empty Cell PSM, n (%) Empty Cell
Preoperative MRI Non-MRI p-Value
Surgical approach
ORP 11 (41) 53 (54) 0.20
LRP 33 (54) 118 (51) 0.70
RARP 105 (45) 212 (51) 0.20
NVB sparing
None 99 (49) 257 (51) 0.90
Unilateral 10 (36) 25 (54) 0.10
Bilateral 37 (40) 100 (52) 0.06
pT
2 62 (34) 141 (39) 0.40
3a 61 (60) 148 (61) 0.80
3b 25 (71) 94 (72) 0.40
Surgeon experience
1-100 23 (32) 91 (51) <0.05
>100 126 (51) 292 (51) 0.90
  
Clinical and pathological characteristics Univariate analysis Multivariate analysis
OR (95% CI) p-Value Adjusted OR (95% CI) p-Value
Preoperative MRI
No 1 (ref) 1 (ref)
Yes 0.62 (0.45, 0.86) <0.05 0.59 (0.42, 0.85) <0.05
ISUP group
1 1 (ref) 1 (ref)
2 3.1 (1.6, 6.1) <0.05 3.0 (1.5, 6.0) <0.05
3 3.0 (1.5, 6.0) <0.05 2.2 (1.0, 4.7) <0.05
4 4.6 (2.1, 10.0) <0.05 3.5 (1.5, 8.2) <0.05
5 8.3 (3.8, 18.0) <0.05 3.7 (1.6, 8.8) <0.05
ADT effect 5.3 (2.2, 13.0) <0.05 4.1 (1.6, 10.0) <0.05
Surgeon's experience
>100 1 (ref) 1 (ref)
1-100 0.57 (0.38, 0.83) <0.05 0.51 (0.32, 0.79) <0.05
NVB sparing
None 1 (ref)
Unilateral 0.76 (0.42, 1.40) 0.40
Bilateral 1.20 (0.82, 1.70) 0.30
pT
2 1 (ref) 1 (ref)
3a 2.8 (1.9, 4.1) <0.05 2.3 (1.5, 3.5) <0.05
3b 4.7 (2.6, 8.5) <0.05 2.7 (1.3, 5.5) <0.05
Tumor involvement percentage
<50% 1 (ref) 1 (ref)
≥50% 5.4 (2.2, 13.0) <0.05 2.4 (0.9, 6.3) <0.05
iPSA, ng/mL
<10 1 (ref) 1 (ref)
10 to 20 2.0 (1.3, 2.9) <0.05 1.8 (1.2, 2.7) <0.05
≥20 2.9 (1.8, 4.4) <0.05 1.7 (1.0, 2.7) 0.05
Op-time, min
<120 1 (ref) 1 (ref)
120 to 180 0.60 (0.35, 1.0) 0.07 0.79 (0.44, 1.4) 0.40
180 to 240 0.53 (0.30, 0.94) <0.05 0.60 (0.32, 1.1) 0.10
≥240 0.62 (0.34, 1.10) 0.10 0.84 (0.43, 1.7) 0.60
Blood loss, mL
<600 1 (ref)
600 to 1200 0.89 (0.50, 1.60) 0.70
≥1200 1.10 (0.50, 2.40) 0.80
  
Clinical and pathological characteristics Univariate analysis Multivariate analysis
OR (95% CI) p-Value Adjusted OR (95% CI) p-Value
Preoperative MRI
No 1 (ref) 1 (ref)
Yes 0.69 (0.49, 0.96) <0.05 0.69 (0.48, 0.98) <0.05
ISUP group
1 1 (ref) 1 (ref)
2 2.5 (1.1, 5.7) <0.05 2.5 (1.1, 5.8) <0.05
3 2.2 (1.0, 5.2) 0.06 2.1 (0.9, 5.1) 0.09
4 2.4 (1.0, 6.1) 0.06 2.1 (0.8, 5.4) 0.10
5 4.4 (1.9, 10) <0.05 3.2 (1.3, 8.2) <0.05
ADT effect 3.5 (1.3, 9.0) <0.05 3.1 (1.2, 8.4) <0.05
Surgeon experience
>100 1 (ref)
1-100 0.69 (0.45, 1.10) 0.08
NVB sparing
None 1 (ref) 1 (ref)
Unilateral 0.42 (0.20, 0.87) <0.05 0.58 (0.27, 1.2) 0.20
Bilateral 0.79 (0.54, 1.2) 0.20 0.96 (0.63, 1.5) 0.80
pT
2 1 (ref) 1 (ref)
3a 1.2 (0.9, 1.8) 0.30 0.90 (0.59, 1.40) 0.60
3b 1.8 (1.1, 3.0) <0.05 0.81 (0.42, 1.60) 0.50
Tumor involvement percentage
<50% 1 (ref) 1 (ref)
≥50% 2.9 (1.6, 5.3) <0.05 2.0 (1.0, 4.1) 0.05
iPSA, ng/mL
<10 1 (ref) 1 (ref)
10 to 20 1.6 (1.1, 2.4) <0.05 1.6 (1.0, 2.4) <0.05
≥20 2.6 (1.7, 3.9) <0.05 2.1 (1.3, 3.5) <0.05
Op-time, min
<120 1 (ref) 1 (ref)
120 to 180 0.65 (0.39, 1.10) 0.10 0.78 (0.45, 1.30) 0.40
180 to 240 0.51 (0.29, 0.90) <0.05 0.54 (0.29, 0.98) <0.05
≥240 0.89 (0.50, 1.60) 0.70 0.97 (0.53, 1.80) 0.90
Blood loss, mL
<600 1 (ref)
600 to 1200 1.10 (0.59, 1.90) 0.80
≥1200 0.93 (0.41, 2.10) 0.90
  
[1] Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol 2019; 76:340-51.
doi: S0302-2838(19)30180-0 pmid: 30898406
[2] Johnson DC, Raman SS, Mirak SA, Kwan L, Bajgiran AM, Hsu W, et al. Detection of individual prostate cancer foci via multiparametric magnetic resonance imaging. Eur Urol 2019; 75: 712-20.
doi: S0302-2838(18)30930-8 pmid: 30509763
[3] Aussavavirojekul P, Hoonlor A, Srinualnad S. Optimization of clinical risk-factor interpretation and radiological findings with machine learning for PIRADS category 3 patients. Prostate 2022; 82:235-44.
doi: 10.1002/pros.v82.2
[4] Exterkate L, Wegelin O, Barentsz JO, van der Leest MG, Kummer JA, Vreuls W, et al. Is there still a need for repeated systematic biopsies in patients with previous negative biopsies in the era of magnetic resonance imaging-targeted biopsies of the prostate? Eur Urol Oncol 2020; 3:216-23.
doi: S2588-9311(19)30080-X pmid: 31239236
[5] van der Leest M, Cornel E, Israel B, Hendriks R, Padhani AR, Hoogenboom M, et al. Head-to-head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate resonance imaging with subsequent magnetic resonance-guided biopsy in biopsy-naive men with elevated prostate-specific antigen: a large prospective multicenter clinical study. Eur Urol 2019; 75:570-8.
doi: 10.1016/j.eururo.2018.11.023
[6] Rouviere O, Puech P, Renard-Penna R, Claudon M, Roy C, Mege-Lechevallier F, et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsynaive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol 2019; 20:100-9.
doi: 10.1016/S1470-2045(18)30569-2
[7] Sanda MG, Cadeddu JA, Kirkby E, Chen RC, Crispino T, Fontanarosa J, et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: risk stratification, shared decision making, and care options. J Urol 2018; 199:683-90.
doi: S0022-5347(17)78003-2 pmid: 29203269
[8] Dankulchai P, Tupwongse P, Thephamongkhol K, Petchsuksiri J, Chansilpa Y, Ieumwananonthachai N, et al. Preliminary result of using intensity modulated radiation therapy (IMRT) as a primary treatment for prostate cancer at Siriraj Hospital in Thailand: toxicity and biochemical outcomes. Siriraj Med J 2010; 62:250-4.
[9] Kordan Y, Salem S, Chang SS, Clark PE, Cookson MS, Davis R, et al. Impact of positive apical surgical margins on likelihood of biochemical recurrence after radical prostatectomy. J Urol 2009; 182:2695-701.
doi: 10.1016/j.juro.2009.08.054 pmid: 19836759
[10] Pettus JA, Weight CJ, Thompson CJ, Middleton RG, Stephenson RA. Biochemical failure in men following radical retropubic prostatectomy: impact of surgical margin status and location. J Urol 2004; 172:129-32.
doi: 10.1097/01.ju.0000132160.68779.96 pmid: 15201752
[11] Zhang L, Wu B, Zha Z, Zhao H, Yuan J, Jiang Y, et al. Surgical margin status and its impact on prostate cancer prognosis after radical prostatectomy: a meta-analysis. World J Urol 2018; 36:1803-15.
doi: 10.1007/s00345-018-2333-4 pmid: 29766319
[12] Yodkhunatham N, Taweemonkongsap T, Ramart P, Jitpraphai S, Hansomwong T, Leewansangtong S, et al. Tenyear oncological outcomes of prostate cancer after roboticassisted laparoscopic radical prostatectomy: single center experience. J Med Assoc Thai 2020; 103:81-6.
[13] Saksirisampant P, Nualyong C, Srinualnad S, Leewansangtong S, Taweemonkongsap T, Jitpraphai S, et al. PSM after RP predict survival outcome associated risk factors in Thai prostate cancer patients. J Med Assoc Thai 2020; 103: 68-74.
doi: 10.35755/jmedassocthai
[14] Bratan F, Niaf E, Melodelima C, Chesnais AL, Souchon R, Mege- Lechevallier F, et al. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol 2013; 23: 2019-29.
doi: 10.1007/s00330-013-2795-0 pmid: 23494494
[15] Rud E, Baco E, Klotz D, Rennesund K, Svindland A, Berge V, et al. Does preoperative magnetic resonance imaging reduce the rate of positive surgical margins at radical prostatectomy in a randomised clinical trial? Eur Urol 2015; 68:487-96.
doi: 10.1016/j.eururo.2015.02.039 pmid: 25813692
[16] McClure TD, Margolis DJ, Reiter RE, Sayre JW, Thomas MA, Nagarajan R, et al. Use of MR imaging to determine preservation of the neurovascular bundles at robotic-assisted laparoscopic prostatectomy. Radiology 2012; 262:874-83.
doi: 10.1148/radiol.11103504 pmid: 22274837
[17] Iremashvili V, Pelaez L, Jorda M, Manoharan M, Arianayagam M, Rosenberg DL, et al. Prostate sampling by 12- core biopsy: comparison of the biopsy results with tumor location in prostatectomy specimens. Urology 2012; 79:37-42.
doi: 10.1016/j.urology.2011.09.011 pmid: 22055691
[18] Takashima R, Egawa S, Kuwao S, Baba S. Anterior distribution of stage T1c nonpalpable tumors in radical prostatectomy specimens. Urology 2002; 59:692-7.
pmid: 11992842
[19] Fontenot PA, Mansour AM. Reporting positive surgical margins after radical prostatectomy: time for standardization. BJU Int 2013; 111:E290-9. https://doi.org/10.1111/j.1464-410X.2012.11640.x.
doi: 10.1111/bju.2013.111.issue-8
[20] Wadhwa K, Patruno G, Patterson A, Barrett T, Dalia C, Koo BC, et al. Robotic assisted laparoscopic radical prostatectomy following transrectal compared to transperineal prostate biopsy: surgical, oncological and functional outcomes. Minerva Urol Nefrol 2017; 69:85-92.
doi: 10.23736/S0393-2249.16.02759-4 pmid: 28009149
[21] Yao HH, Ball K, Bazo A, Terry TR, Walton TJ. Effect of transperineal template prostate biopsy on perioperative and functional outcomes following robotic-assisted radical prostatectomy. J Clin Urol 2022; 15:331-40.
[22] Ayala AG, Ro JY, Babaian R, Troncoso P, Grignon DJ. The prostatic capsule: does it exist? Its importance in the staging and treatment of prostatic carcinoma. Am J Surg Pathol 1989; 13:21-7.
pmid: 2909195
[23] Wibulpolprasert P, Raman SS, Hsu W, Margolis DJA, Asvadi NH, Khoshnoodi P, et al. Influence of the location and zone of tumor in prostate cancer detection and localization on 3-T multiparametric MRI based on PI-RADS version 2. AJR Am J Roentgenol 2020; 214:1101-11.
doi: 10.2214/AJR.19.21608
[24] J?derling F, Akre O, Aly M, Bjorklund J, Olsson M, Adding C, et al. Preoperative staging using magnetic resonance imaging and risk of positive surgical margins after prostate-cancer surgery. Prostate Cancer Prostatic Dis 2019; 22:391-8.
doi: 10.1038/s41391-018-0116-z
[25] Druskin SC, Liu JJ, Young A, Feng Z, Dianat SS, Ludwig WW, et al. Prostate MRI prior to radical prostatectomy: effects on nerve sparing and pathological margin status. Res Rep Urol 2017; 9:55-63.
doi: 10.2147/RRU.S128499 pmid: 28459044
[26] Coakley FV, Eberhardt S, Wei DC, Wasserman ES, Heinze SB, Scardino PT, et al. Blood loss during radical retropubic prostatectomy: relationship to morphologic features on preoperative endorectal magnetic resonance imaging. Urology 2002; 59:884-8.
pmid: 12031374
[27] Salonia A, Burnett AL, Graefen M, Hatzimouratidis K, Montorsi F, Mulhall JP, et al. Prevention and management of postprostatectomy sexual dysfunctions. Part 1: choosing the right patient at the right time for the right surgery. Eur Urol 2012; 62:261-72.
doi: 10.1016/j.eururo.2012.04.046 pmid: 22575909
[28] Michl U, Tennstedt P, Feldmeier L, Mandel P, Oh SJ, Ahyai S, et al. Nerve-sparing surgery technique, not the preservation of the neurovascular bundles, leads to improved long-term continence rates after radical prostatectomy. Eur Urol 2016; 69:584-9.
doi: S0302-2838(15)00696-X pmid: 26277303
[29] Kozikowski M, Malewski W, Michalak W, Dobruch J. Clinical utility of MRI in the decision-making process before radical prostatectomy: systematic review and meta-analysis. PLoS One 2019; 14:e0210194. https://doi.org/10.1371/journal.pone.0210194.
doi: 10.1371/journal.pone.0210194
No related articles found!
[1] Ponco Birowo,Nur Rasyid,Chaidir A. Mochtar,Bambang S. Noegroho,H.R. Danarto,Besut Daryanto,Lukman Hakim,Dyandra Parikesit,Fakhri Rahman,S. Cahyo Ariwicaksono. Daily activities and training experiences of urology residents during the coronavirus disease 2019 pandemic in Indonesia: A nationwide survey[J]. Asian Journal of Urology, 2023, 10(2): 119 -127 .
[2] Saeed R. Khan,Benjamin K. Canales. Proposal for pathogenesis-based treatment options to reduce calcium oxalate stone recurrence[J]. Asian Journal of Urology, 2023, 10(3): 246 -257 .
[3] Guohua Zeng,Wei Zhu. Urolithiasis: From pathogenesis to management (part one)[J]. Asian Journal of Urology, 2023, 10(3): 213 -214 .
[4] Rasim Güzel,Ümit Yildirim,Kemal Sarica. Contemporary minimal invasive surgical management of stones in children[J]. Asian Journal of Urology, 2023, 10(3): 239 -245 .
[5] Lazaros Tzelves,Patrick Juliebø-Jones,Ioannis Manolitsis,Themistoklis Bellos,Ioannis Mykoniatis,Marinos Berdempes,Titos Markopoulos,Michael Lardas,Belthangady M. Zeeshan Hameed,Panagiotis Angelopoulos,Amelia Pietropaolo,Bhaskar Somani,Ioannis Varkarakis,Andreas Skolarikos. Radiation protection measures during endourological therapies[J]. Asian Journal of Urology, 2023, 10(3): 215 -225 .
[6] Giorgio Mazzon,Simon Choong,Antonio Celia. Stone-scoring systems for predicting complications in percutaneous nephrolithotomy: A systematic review of the literature[J]. Asian Journal of Urology, 2023, 10(3): 226 -238 .
[7] Anastasios Anastasiadis,Antonios Koudonas,Georgios Langas,Stavros Tsiakaras,Dimitrios Memmos,Ioannis Mykoniatis,Evangelos N. Symeonidis,Dimitrios Tsiptsios,Eliophotos Savvides,Ioannis Vakalopoulos,Georgios Dimitriadis,Jean de la Rosette. Transforming urinary stone disease management by artificial intelligence-based methods: A comprehensive review[J]. Asian Journal of Urology, 2023, 10(3): 258 -274 .
[8] Reza Mehrazin, Shirin Razdan. Utility of three-dimensional virtual reconstruction for robotic-assisted partial nephrectomy using the IRIS[J]. Asian Journal of Urology, 2023, 10(4): 388 -389 .
[9] Savio Domenico Pandolfo, Clara Cerrato, Zhenjie Wu, Antonio Franco, Francesco Del Giudice, Alessandro Sciarra, Paolo Verze, Giuseppe Lucarelli, Ciro Imbimbo, Sisto Perdonà, Edward E. Cherullo, Francesco Porpiglia, Ithaar H. Derweesh, Riccardo Autorino. A systematic review of robot-assisted partial nephrectomy outcomes for advanced indications: Large tumors (cT2-T3), solitary kidney, completely endophytic, hilar, recurrent, and multiple renal tumors[J]. Asian Journal of Urology, 2023, 10(4): 390 -406 .
[10] Enrico Checcucci, Alberto Piana, Gabriele Volpi, Pietro Piazzolla, Daniele Amparore, Sabrina De Cillis, Federico Piramide, Cecilia Gatti, Ilaria Stura, Enrico Bollito, Federica Massa, Michele Di Dio, Cristian Fiori, Francesco Porpiglia. Three-dimensional automatic artificial intelligence driven augmented-reality selective biopsy during nerve-sparing robot-assisted radical prostatectomy: A feasibility and accuracy study[J]. Asian Journal of Urology, 2023, 10(4): 407 -415 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed