|
|
Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios alone or combined with prostate-specific antigen for the diagnosis of prostate cancer and clinically significant prostate cancer |
Sat Prasad Nepal*( ),Takehiko Nakasato,Takashi Fukagai,Yoshio Ogawa,Yoshihiro Nakagami,Takeshi Shichijo,Jun Morita,Yoshiko Maeda,Kazuhiko Oshinomi,Tsutomu Unoki,Tetsuo Noguchi,Tatsuki Inoue,Ryosuke Kato,Satoshi Amano,Moyuru Mizunuma,Masahiro Kurokawa,Yoshiki Tsunokawa,Sou Yasuda
|
Department of Urology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan |
|
|
Abstract Objective: We evaluated whether the blood parameters before prostate biopsy can diagnose prostate cancer (PCa) and clinically significant PCa (Gleason score [GS] ≥7) in our hospital. Methods: This study included patients with increased prostate-specific antigen (PSA) up to 20 ng/mL. The associations of neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) alone or with PSA with PCa and clinically significant PCa were analyzed. Results: We included 365 patients, of whom 52.9% (193) had PCa including 66.8% (129) with GS of ≥7. PSA density (PSAD) and PSA had better the area under the curve (AUC) of 0.722 and 0.585, respectively with p=0.001 for detecting PCa compared with other blood parameters. PSA combined with PLR (PsPLR) and PSA with NLR (PsNLR) had better AUC of 0.608 and 0.610, respectively with p<0.05, for diagnosing GS≥7 population, compared with PSA, free/total PSA, NLR, PLR, and PsNPLR (PSA combined with NLR and PLR). NLR and PLR did not predict PCa on multivariate analysis. For GS≥7 cancer detection, in the multivariate analysis, separate models with PSA and NLR (Model 1: PsNLR+baseline parameters) or PSA and PLR (Moder 2: PsPLR+baseline parameters) were made. Baseline parameters comprised age, digital rectal exam-positive lesions, PSA density, free/total PSA, and magnetic resonance imaging. Model 2 containing PsPLR was statistically significant (odds ratio: 2.862, 95% confidence interval: 1.174-6.975, p=0.021) in finding aggressive PCa. The predictive accuracy of Model 2 was increased (AUC: 0.734, p<0.001) than that when only baseline parameters were used (AUC: 0.693, p<0.001). Conclusion: NLR or PLR, either alone or combined with PSA, did not detect PCa. However, the combined use of PSA with PLR could find the differences between clinically significant and insignificant PCa in our retrospective study limited by the small number of samples.
|
Received: 06 December 2020
Available online: 20 April 2023
|
Corresponding Authors:
Sat Prasad Nepal
E-mail: satprasad1@gmail.com
|
|
|
Variable | Prostate cancer (n=193) | Non-prostate cancer (BPH) (n=172) | p-Value | Agea, year | 73.02±6.64 | 68.39±8.12 | 0.019 | PSAb, ng/mL | 7.50 (5.25) | 7.15 (4.65) | 0.209 | DRE-positive lesion, n | 68 | 34 | 0.001 | f/t PSAb | 15 (8) | 20 (12) | <0.001 | PVb, mL | 32.0 (19.0) | 45.5 (27.0) | <0.001 | PSADb, (ng/mL)/mL | 0.23 (0.19) | 0.15 (0.11) | <0.001 | MRI-positive lesion, n | 152 | 43 | <0.001 | Hemoglobinb, g/dL | 14 (2) | 14 (2) | 0.007 | Neutrophilsb, 103/mm3 | 6.00 (1.40) | 6.11 (1.31) | 0.513 | Plateletsb, 103/mm3 | 212.23 (64.30) | 221.15 (66.22) | 0.012 | Lymphocytesb, 103/mm3 | 2.86 (1.32) | 2.95 (1.12) | 0.755 | Albuminb, mg/dL | 4.30 (0.50) | 4.30 (0.50) | 0.154 | NLRb | 2.10 (1.30) | 2.10 (1.40) | 0.657 | PLRb | 72.72 (42.27) | 77.08 (47.15) | 0.083 | MPVb, femtoliter | 10.00 (0.49) | 10.00 (0.50) | 0.964 | PsNLRb, ng/mL | 16.50 (16.19) | 15.27 (15.23) | 0.499 | PsPLRb, ng/mL | 593.26 (552.63) | 560.68 (522.42) | 0.892 | PsNPLRb, ng/mL | 1189.84 (1793.16) | 1175.37 (1670.48) | 0.805 |
|
The t-test and Mann-Whitney test for continuous variables and Chi-square test for categorical variables in relation to prostate cancer.
|
Variable | Significant cancer (n=129) | Insignificant cancer (n=64) | p-Value | Agea, year | 73.00±6.26 | 73.06±7.41 | 0.128 | PSAb, ng/mL | 8.10 (5.80) | 6.85 (4.70) | 0.045 | DRE-positive lesion, n | 48 | 20 | 0.415 | f/t PSAb | 14 (8) | 18 (12) | 0.015 | PVb, mL | 33 (20) | 32 (18.75) | 0.369 | PSADb, (ng/mL)/mL | 0.23 (1.66) | 0.21 (0.19) | 0.156 | MRI-positive lesion, n | 107 | 45 | 0.043 | Hemoglobinb, g/dL | 14 (1) | 14 (2) | 0.432 | Neutrophilsb, 103/mm3 | 6.07 (1.38) | 5.90 (1.37) | 0.159 | Plateletsb, 103/mm3 | 213.4 (75.2) | 207.3 (68.3) | 0.410 | Lymphocytesb, 103/mm3 | 2.80 (1.11) | 3.09 (1.45) | 0.064 | Albuminb, mg/dL | 4.3 (0.5) | 4.3 (0.4) | 0.629 | NLRb | 2.2 (1.40) | 1.8 (1.40) | 0.091 | PLRb | 73.52 (46.92) | 66.94 (40.93) | 0.155 | PsNLRb, ng/mL | 18.20 (152.90) | 14.71 (11.39) | 0.013 | PsPLRb, ng/mL | 642.33 (5073.83) | 483.66 (496.27) | 0.015 | PsNPLRb, ng/mL | 1308.70 (15 534.28) | 984.81 (1303.82) | 0.018 |
|
The t-test and Mann-Whitney test for continuous variables and Chi-square test for categorical variables in relation to clinically significant cancer (Gleason score?≥7).
|
Variable | AUC (95% CI) | p-Value | Cut-off, ng/mL | Sensitivity, % | Specificity, % | PPV, % | NPV, % | PSA, ng/mL | 0.585 (0.517-0.653) | 0.016 | 4 | 96.9 | 5.8 | 53.6 | 62.5 | f/t PSA | 0.317 (0.252-0.382) | 0.001 | NR | NR | NR | NR | NR | PV, mL | 0.321 (0.265-0.377) | 0.001 | NR | NR | NR | NR | NR | PSAD, (ng/mL)/mL | 0.722 (0.670-0.774) | 0.001 | 0.175 | 67.9 | 62.8 | 67.2 | 63.5 | Hb, g/dL | 0.420 (0.362-0.479) | 0.008 | NR | NR | NR | NR | NR | Plt, 103/mm3 | 0.424 (0.365-0.482) | 0.012 | NR | NR | NR | NR | NR | NLR | 0.487 (0.427-0.546) | 0.658 | NR | NR | NR | NR | NR | PLR | 0.448 (0.389-0.506) | 0.030 | NR | NR | NR | NR | NR | PsNLR, ng/mL | 0.521 (0.461-0.580) | 0.498 | NR | NR | NR | NR | NR | PsPLR, ng/mL | 0.496 (0.437-0.555) | 0.892 | NR | NR | NR | NR | NR | PsNPLR, ng/mL | 0.492 (0.433-0.552) | 0.805 | NR | NR | NR | NR | NR |
|
ROC curve values in the detection of prostate cancer.
|
Variable | AUC (95% CI) | p-Value | Cut-off, ng/mL | Sensitivity, % | Specificity, % | PPV, % | NPV, % | PSA, ng/mL | 0.589 (0.504-0.673) | 0.045 | 4.00 | 96.9 | 3.1 | 66.8 | 33.3 | f/t PSA | 0.630 (0.525-0.735) | 0.015 | 15.00 | 61.9 | 61.9 | 78.9 | 41.3 | NLR | 0.575 (0.488-0.661) | 0.091 | NR | NR | NR | NR | NR | PLR | 0.563 (0.478-0.647) | 0.155 | NR | NR | NR | NR | NR | PsNLR, ng/mL | 0.610 (0.528-0.691) | 0.013 | 17.18 | 53.5 | 65.6 | 75.0 | 40.6 | PsPLR, ng/mL | 0.608 (0.527-0.689) | 0.015 | 610.22 | 55.8 | 67.2 | 76.6 | 42.4 | PsNPLR, ng/mL | 0.604 (0.522-0.686) | 0.018 | 1145.20 | 55.8 | 60.9 | 72.0 | 38.7 |
|
ROC curve values in the detection of clinically significant prostate cancer (Gleason score?≥7).
|
Category | OR | 95% CI | p-Value | Age | 1.087 | 1.038-1.137 | <0.001 | DRE-positive lesion | 1.310 | 0.611-2.809 | 0.488 | PSAD | 91.612 | 4.987-1682.900 | 0.002 | f/t PSA (<15.00) | 0.334 | 0.163-0.683 | 0.003 | MRI-positive lesion | 13.091 | 6.475-26.467 | <0.001 | NLR | 0.976 | 0.849-1.122 | 0.732 | PLR | 0.994 | 0.989-1.001 | 0.074 |
|
Multivariate analysis in the detection of clinically significant prostate cancer (Gleason score?≥7).
|
Category | Model 1 | Model 2 | OR | 95% CI | p-Value | OR | 95% CI | p-Value | Age | 1.013 | 0.955-1.076 | 0.662 | 1.019 | 0.959-1.082 | 0.548 | DRE-positive lesion | 1.228 | 0.504-2.995 | 0.651 | 1.270 | 0.515-3.128 | 0.604 | PSAD | 1.691 | 0.084-34.240 | 0.732 | 1.264 | 0.059-27.207 | 0.881 | f/t PSA (<15.00) | 2.950 | 1.249-6.971 | 0.014 | 3.107 | 1.301-7.421 | 0.011 | MRI-positive lesion | 3.594 | 1.422-9.086 | 0.007 | 3.690 | 1.448-9.400 | 0.006 | PsNLRa | 0.429 | 0.180-1.019 | 0.055 | | | | PsPLRa | | | | 2.862 | 1.174-6.975 | 0.021 |
|
Multivariate Models 1 (PsNLR+baseline parameters) and 2 (PsPLR+baseline parameters), for detecting clinically significant PCa (Gleason score?≥7).
|
[1] |
Thompson IM, Ankerst DP, Chi C, Goodman PJ, Tangen CM, Lucia MS, et al. Assessing prostate cancer risk: results from the prostate cancer prevention trial. J Natl Cancer Inst 2006; 98:529-34.
doi: 10.1093/jnci/djj131
pmid: 16622122
|
[2] |
Catalona WJ, Southwick PC, Slawin KM, Partin AW, Brawer MK, Flanigan RC, et al. Comparison of percent free PSA, PSA density, and age-specific PSA cutoffs for prostate cancer detection and staging. Urology 2000; 56:255-60.
pmid: 10925089
|
[3] |
Ploussard G, Nicolaiew N, Marchand C, Terry S, Allory Y, Vacherot F, et al. Risk of repeat biopsy and prostate cancer detection after an initial extended negative biopsy: longitudinal follow-up from a prospective trial. BJU Int 2013; 111: 988-96.
doi: 10.1111/j.1464-410X.2012.11607.x
pmid: 23452046
|
[4] |
Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 2017; 71:618-29.
doi: S0302-2838(16)30470-5
pmid: 27568654
|
[5] |
Hori S, Tanaka N, Nakai Y, Morizawa Y, Tatsumi Y, Miyake M, et al. Comparison of cancer detection rates by transrectal prostate biopsy for prostate cancer using two different nomograms based on patient’s age and prostate volume. Res Rep Urol 2019; 11:61-8.
|
[6] |
Gentile F, Ferro M, Della Ventura B, La Civita E, Liotti A, Cennamo M, et al. Optimized identification of high-grade prostate cancer by combining different PSA molecular forms and PSA density in a deep learning model. Diagnostics 2021; 11:335. https://doi.org/10.3390/diagnostics11020335.
doi: 10.3390/diagnostics11020335
|
[7] |
Bardan R, Dumache R, Dema A, Cumpanas A, Bucuras V. The role of prostatic inflammation biomarkers in the diagnosis of prostate diseases. Clin Biochem 2014; 47:909-15.
doi: 10.1016/j.clinbiochem.2014.02.008
pmid: 24560954
|
[8] |
Kohnen PW, Drach GW. Patterns of inflammation in prostatic hyperplasia: a histologic and bacteriologic study. J Urol 1979; 121:755-60.
doi: 10.1016/s0022-5347(17)56980-3
pmid: 88527
|
[9] |
Djavan B, Eckersberger E, Espinosa G, Kramer G, Handisurya A, Lee C, et al. Complex mechanisms in prostatic inflammatory response. Eur Urol Suppl 2009; 8:872-8.
doi: 10.1016/j.eursup.2009.11.003
|
[10] |
Di Silverio F, Gentile V, De Matteis A, Mariotti G, Giuseppe V, Luigi PA, et al. Distribution of inflammation, pre-malignant lesions, incidental carcinoma in histologically confirmed benign prostatic hyperplasia: a retrospective analysis. Eur Urol 2003; 43:164-75.
doi: 10.1016/s0302-2838(02)00548-1
pmid: 12565775
|
[11] |
Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357:539-45.
doi: 10.1016/S0140-6736(00)04046-0
pmid: 11229684
|
[12] |
de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Global Health 2020; 8: e180-90. https://doi.org/10.1016/S2214-109X(19)30488-7.
doi: 10.1016/S2214-109X(19)30488-7
pmid: 31862245
|
[13] |
Guo J, Fang J, Huang X, Liu Y, Yuan Y, Zhang X, et al. Prognostic role of neutrophil-to-lymphocyte ratio and platelet to lymphocyte ratio in prostate cancer: a meta-analysis of results from multivariate analysis. Int J Surg 2018; 60:216-23.
doi: 10.1016/j.ijsu.2018.11.020
|
[14] |
Minardi D, Scartozzi M, Montesi L, Santoni M, Burattini L, Bianconi M, et al. Neutrophil-to-lymphocyte ratio may be associated with the outcome in patients with prostate cancer. Springerplus 2015; 4:255. https://doi.org/10.1186/s40064-015-1036-1.
doi: 10.1186/s40064-015-1036-1
pmid: 26085975
|
[15] |
Kawahara T, Fukui S, Sakamaki K, Ito Y, Ito H, Kobayashi N, et al. Neutrophil-to-lymphocyte ratio predicts prostatic carcinoma in men undergoing needle biopsy. Oncotarget 2015; 6:32169-76.
doi: 10.18632/oncotarget.5081
pmid: 26359354
|
[16] |
Oh JJ, Kwon O, Lee JK, Byun S, Lee SE, Lee S, et al. Association of the neutrophil-to-lymphocyte ratio and prostate cancer detection rates in patients via contemporary multicore prostate biopsy. Asian J Androl 2016; 18:937-41.
doi: 10.4103/1008-682X.164198
|
[17] |
Adhyatma KP, Warli SM. Diagnostic value of platelet-tolymphocyte ratio in prostate cancer. Open Access Maced J Med Sci 2019; 7:1093-6.
doi: 10.3889/oamjms.2019.252
|
[18] |
Gokce MI, Hamidi N, Suer E, Tangal S, Huseynov A, Ibis A. Evaluation of neutrophil-to-lymphocyte ratio prior to prostate biopsy to predict biopsy histology: results of 1836 patients. Can Urol Assoc J 2015; 9:e761-5. https://doi.org/10.5489/cuaj.3091.
|
[19] |
Vidal AC, Howard LE, de Hoedt A, Cooperberg MR, Kane CJ, Aronson WJ, et al. Neutrophil, lymphocyte and platelet counts, and risk of prostate cancer outcomes in white and black men: results from the SEARCH database. Cancer Causes Control 2018; 29:581-8.
|
[20] |
Murray NP, Fuentealba C, Salazar A, Reyes E. Platelet-tolymphocyte ratio and systemic immune-inflammation index versus circulating prostate cells to predict significant prostate cancer at first biopsy. Turk J Urol 2020; 46:115-22.
doi: 10.5152/tud.2020.19203
pmid: 32053099
|
[21] |
Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21:309-22.
doi: 10.1016/j.ccr.2012.02.022
pmid: 22439926
|
[22] |
Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys 2003; 417:3-11.
doi: 10.1016/s0003-9861(03)00283-2
pmid: 12921773
|
[23] |
Li N. Platelets in cancer metastasis: to help the “villain” to do evil. Int J Cancer 2016; 138:2078-87.
doi: 10.1002/ijc.v138.9
|
[24] |
De Marzo AM, Marchi VL, Epstein JI, Nelson WG. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 1999; 155:1985-92.
doi: 10.1016/S0002-9440(10)65517-4
pmid: 10595928
|
[25] |
Platz EA, De Marzo AM. Epidemiology of inflammation and prostate cancer. J Urol 2004; 171:S36-40. https://doi.org/10.1097/01.ju.0000108131.43160.77.
doi: 10.1097/01.ju.0000108131.43160.77
pmid: 14713751
|
[26] |
Palapattu GS, Sutcliffe S, Bastain PJ, Platz EA. Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis 2004; 26:1170-81.
doi: 10.1093/carcin/bgh317
|
[27] |
Dennis LK, Lynch CF, Torner JC. Epidemiologic association between prostatitis and prostate cancer. Urology 2002; 60: 78-83.
pmid: 12100928
|
[28] |
Dennis LK, Dawson DV. Meta-analysis of measures of sexual activity and prostate cancer. Epidemiology 2002; 13:72-9.
pmid: 11805589
|
[29] |
Ferro M, Musi G, Matei DV, Mistretta AF, Luzzago S, Cozzi G, et al. Assessment of PSIM (prostatic systemic inflammatory markers) score in predicting pathologic features at robotic radical prostatectomy in patientswith low-risk prostate cancerwhomet the inclusion criteria for active surveillance. Diagnostics 2021; 11: 355. https://doi.org/10.3390/diagnostics11020355.
doi: 10.3390/diagnostics11020355
|
[30] |
Sun J, Zhang Z, OuYang J. A novel nomogram combined PIRADS v2 and neutrophil-to-lymphocyte ratio to predict the risk of clinically significant prostate cancer in men with PSA <10 ng/mL at first biopsy. Urol Oncol 2020; 38:401-9.
doi: 10.1016/j.urolonc.2019.12.006
|
[31] |
Kaynar M, Yildirim ME, Gul M, Kilic O, Ceylan K, Goktas S. Benign prostatic hyperplasia and prostate cancer differentiation via platelet to lymphocyte ratio. Cancer Biomarkers 2015; 15:317-23.
doi: 10.3233/CBM-150458
pmid: 25586096
|
[32] |
Khosropanah I, Rostami S, Heidari Bateni Z, Teimoori M, Khosrovpanah D. Prognostic value of neutrophil-to-lymphocyte ratio on pathologic findings of transrectal ultrasonography guided biopsy of prostate. Iran J Pathol 2018; 13:333-9.
|
[33] |
Kamali K, Ashrafi M, Shadpour P, Ameli M, Khayyamfar A, Abolhasani M, et al. The role of blood neutrophil count and the neutrophil-to-lymphocyte ratio as a predictive factor for prostate biopsy results. Urologia 2018; 85:158-62.
doi: 10.1177/0391560318766822
pmid: 29633657
|
[34] |
Huang TB, Mao SY, Lu SM, Yu JJ, Luan Y, Gu X, et al. Predictive value of neutrophil-to-lymphocyte ratio in diagnosis of prostate cancer among men who underwent template-guided prostate biopsy: a STROBE-compliant study. Medicine (Baltim) 2016; 95: e5307. https://doi.org/10.1097/MD.0000000000005307.
doi: 10.1097/MD.0000000000005307
|
[35] |
Bruunsgaard H, Ladelund S, Pedersen AN, Schroll M, J?rgensen T, Pedersen BK. Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people. Clin Exp Immunol 2003; 132:24-31.
doi: 10.1046/j.1365-2249.2003.02137.x
pmid: 12653832
|
[36] |
Jahn JL, Giovannucci EL, Stampfer MJ. The high prevalence of undiagnosed prostate cancer at autopsy: implications for epidemiology and treatment of prostate cancer in the prostate-specific antigen-era. Int J Cancer 2015; 137: 2795-802.
doi: 10.1002/ijc.29408
pmid: 25557753
|
[1] |
Fabricio B. Carrerette,Daniela B. Rodeiro,Rui T. F. Filho,Paulo A. Santos,Celso C. Lara,Ronaldo Damião. Randomized controlled trial comparing open anterograde anatomic radical retropubic prostatectomy with retrograde technique[J]. Asian Journal of Urology, 2023, 10(2): 151-157. |
[2] |
Donghua Xie,Di Gu,Ming Lei,Cong Cai,Wen Zhong,Defeng Qi,Wenqi Wu,Guohua Zeng,Yongda Liu. The application of indocyanine green in guiding prostate cancer treatment[J]. Asian Journal of Urology, 2023, 10(1): 1-8. |
[3] |
Hua Gong,Kang Chen,Lan Zhou,Yongchao Jin,Weihua Chen. Deleted in liver cancer 1 suppresses the growth of prostate cancer cells through inhibiting Rho-associated protein kinase pathway[J]. Asian Journal of Urology, 2023, 10(1): 50-57. |
[4] |
Leandro Blas,Masaki Shiota,Shohei Nagakawa,Shigehiro Tsukahara,Takashi Matsumoto,Ken Lee,Keisuke Monji,Eiji Kashiwagi,Junichi Inokuchi,Masatoshi Eto. Validation of user-friendly models predicting extracapsular extension in prostate cancer patients[J]. Asian Journal of Urology, 2023, 10(1): 81-88. |
[5] |
Liang G. Qu,Gregory Jack,Marlon Perera,Melanie Evans,Sue Evans,Damien Bolton,Nathan Papa. Impact of delay from transperineal biopsy to radical prostatectomy upon objective measures of cancer control[J]. Asian Journal of Urology, 2022, 9(2): 170-176. |
[6] |
Jie Cao,Chunxue Peng,Xiaoying Lu,Lingjun Zhou,Jing Wu. Factors influencing the degree of participation in surgical decision-making among Chinese patients with prostate cancer: A qualitative research[J]. Asian Journal of Urology, 2022, 9(2): 177-185. |
[7] |
Georgios Tsampoukas,Victor Manolas,Dominic Brown,Athanasios Dellis,Konstantinos Deliveliotis,Mohamad Moussa,Athanasios Papatsoris. Atypical small acinar proliferation and its significance in pathological reports in modern urological times[J]. Asian Journal of Urology, 2022, 9(1): 12-17. |
[8] |
Christa Babst,Thomas Amiel,Tobias Maurer,Sophie Knipper,Lukas Lunger,Robert Tauber,Margitta Retz,Kathleen Herkommer,Matthias Eiber,Gunhild von Amsberg,Markus Graefen,Juergen Gschwend,Thomas Steuber,Matthias Heck. Cytoreductive radical prostatectomy after chemohormonal therapy in patients with primary metastatic prostate cancer[J]. Asian Journal of Urology, 2022, 9(1): 69-74. |
[9] |
Edward K. Chang,Adam J. Gadzinski,Yaw A. Nyame. Blood and urine biomarkers in prostate cancer: Are we ready for reflex testing in men with an elevated prostate-specific antigen?[J]. Asian Journal of Urology, 2021, 8(4): 343-353. |
[10] |
Luke P. O’Connor,Shayann Ramedani,Michael Daneshvar,Arvin K. George,Andre Luis Abreu,Giovanni E. Cacciamani,Amir H. Lebastchi. Future perspective of focal therapy for localized prostate cancer[J]. Asian Journal of Urology, 2021, 8(4): 354-361. |
[11] |
Akira Kurozumi,Shawn E. Lupold. Alternative polyadenylation: An untapped source for prostate cancer biomarkers and therapeutic targets?[J]. Asian Journal of Urology, 2021, 8(4): 407-415. |
[12] |
Wattanachai Ratanapornsompong,Suthep Pacharatakul,Premsant Sangkum,Chareon Leenanupan,Wisoot Kongcharoensombat. Effect of puboprostatic ligament preservation during robotic-assisted laparoscopic radical prostatectomy on early continence: Randomized controlled trial[J]. Asian Journal of Urology, 2021, 8(3): 260-268. |
[13] |
Zepeng Jia,Yifan Chang,Yan Wang,Jing Li,Min Qu,Feng Zhu,Huan Chen,Bijun Lian,Meimian Hua,Yinghao Sun,Xu Gao. Sustainable functional urethral reconstruction: Maximizing early continence recovery in robotic-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(1): 126-133. |
[14] |
Yinghao Sun,Liping Xie,Tao Xu,Jørn S. Jakobsen,Weiqing Han,Per S. Sørensen,Xiaofeng Wang. Efficacy and safety of degarelix in patients with prostate cancer: Results from a phase III study in China[J]. Asian Journal of Urology, 2020, 7(3): 301-308. |
[15] |
Simeng Wen,Yuanjie Niu,Haojie Huang. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 203-218. |
|
|
|
|