Please wait a minute...
Search Asian J Urol Advanced Search
Share 
Asian Journal of Urology, 2023, 10(2): 158-165    doi: 10.1016/j.ajur.2022.02.007
  本期目录 | 过刊浏览 | 高级检索 |
Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios alone or combined with prostate-specific antigen for the diagnosis of prostate cancer and clinically significant prostate cancer
Sat Prasad Nepal*(),Takehiko Nakasato,Takashi Fukagai,Yoshio Ogawa,Yoshihiro Nakagami,Takeshi Shichijo,Jun Morita,Yoshiko Maeda,Kazuhiko Oshinomi,Tsutomu Unoki,Tetsuo Noguchi,Tatsuki Inoue,Ryosuke Kato,Satoshi Amano,Moyuru Mizunuma,Masahiro Kurokawa,Yoshiki Tsunokawa,Sou Yasuda
Department of Urology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
下载:  HTML  PDF (471KB) 
输出:  BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract: 

Objective: We evaluated whether the blood parameters before prostate biopsy can diagnose prostate cancer (PCa) and clinically significant PCa (Gleason score [GS] ≥7) in our hospital.
Methods: This study included patients with increased prostate-specific antigen (PSA) up to 20 ng/mL. The associations of neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) alone or with PSA with PCa and clinically significant PCa were analyzed.
Results: We included 365 patients, of whom 52.9% (193) had PCa including 66.8% (129) with GS of ≥7. PSA density (PSAD) and PSA had better the area under the curve (AUC) of 0.722 and 0.585, respectively with p=0.001 for detecting PCa compared with other blood parameters. PSA combined with PLR (PsPLR) and PSA with NLR (PsNLR) had better AUC of 0.608 and 0.610, respectively with p<0.05, for diagnosing GS≥7 population, compared with PSA, free/total PSA, NLR, PLR, and PsNPLR (PSA combined with NLR and PLR). NLR and PLR did not predict PCa on multivariate analysis. For GS≥7 cancer detection, in the multivariate analysis, separate models with PSA and NLR (Model 1: PsNLR+baseline parameters) or PSA and PLR (Moder 2: PsPLR+baseline parameters) were made. Baseline parameters comprised age, digital rectal exam-positive lesions, PSA density, free/total PSA, and magnetic resonance imaging. Model 2 containing PsPLR was statistically significant (odds ratio: 2.862, 95% confidence interval: 1.174-6.975, p=0.021) in finding aggressive PCa. The predictive accuracy of Model 2 was increased (AUC: 0.734, p<0.001) than that when only baseline parameters were used (AUC: 0.693, p<0.001).
Conclusion: NLR or PLR, either alone or combined with PSA, did not detect PCa. However, the combined use of PSA with PLR could find the differences between clinically significant and insignificant PCa in our retrospective study limited by the small number of samples.

Key words:  Blood parameter    Gleason score    Neutrophil-to-lymphocyte ratio    Platelet-to-lymphocyte ratio    Prostate cancer
收稿日期:  2020-12-06      修回日期:  2021-06-21      接受日期:  2021-09-26      出版日期:  2023-04-20      发布日期:  2023-05-24      整期出版日期:  2023-04-20
引用本文:    
. [J]. Asian Journal of Urology, 2023, 10(2): 158-165.
Sat Prasad Nepal,Takehiko Nakasato,Takashi Fukagai,Yoshio Ogawa,Yoshihiro Nakagami,Takeshi Shichijo,Jun Morita,Yoshiko Maeda,Kazuhiko Oshinomi,Tsutomu Unoki,Tetsuo Noguchi,Tatsuki Inoue,Ryosuke Kato,Satoshi Amano,Moyuru Mizunuma,Masahiro Kurokawa,Yoshiki Tsunokawa,Sou Yasuda. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios alone or combined with prostate-specific antigen for the diagnosis of prostate cancer and clinically significant prostate cancer. Asian Journal of Urology, 2023, 10(2): 158-165.
链接本文:  
http://www.ajurology.com/CN/10.1016/j.ajur.2022.02.007  或          http://www.ajurology.com/CN/Y2023/V10/I2/158
Variable Prostate cancer (n=193) Non-prostate cancer (BPH) (n=172) p-Value
Agea, year 73.02±6.64 68.39±8.12 0.019
PSAb, ng/mL 7.50 (5.25) 7.15 (4.65) 0.209
DRE-positive lesion, n 68 34 0.001
f/t PSAb 15 (8) 20 (12) <0.001
PVb, mL 32.0 (19.0) 45.5 (27.0) <0.001
PSADb, (ng/mL)/mL 0.23 (0.19) 0.15 (0.11) <0.001
MRI-positive lesion, n 152 43 <0.001
Hemoglobinb, g/dL 14 (2) 14 (2) 0.007
Neutrophilsb, 103/mm3 6.00 (1.40) 6.11 (1.31) 0.513
Plateletsb, 103/mm3 212.23 (64.30) 221.15 (66.22) 0.012
Lymphocytesb, 103/mm3 2.86 (1.32) 2.95 (1.12) 0.755
Albuminb, mg/dL 4.30 (0.50) 4.30 (0.50) 0.154
NLRb 2.10 (1.30) 2.10 (1.40) 0.657
PLRb 72.72 (42.27) 77.08 (47.15) 0.083
MPVb, femtoliter 10.00 (0.49) 10.00 (0.50) 0.964
PsNLRb, ng/mL 16.50 (16.19) 15.27 (15.23) 0.499
PsPLRb, ng/mL 593.26 (552.63) 560.68 (522.42) 0.892
PsNPLRb, ng/mL 1189.84 (1793.16) 1175.37 (1670.48) 0.805
  
Variable Significant cancer (n=129) Insignificant cancer (n=64) p-Value
Agea, year 73.00±6.26 73.06±7.41 0.128
PSAb, ng/mL 8.10 (5.80) 6.85 (4.70) 0.045
DRE-positive lesion, n 48 20 0.415
f/t PSAb 14 (8) 18 (12) 0.015
PVb, mL 33 (20) 32 (18.75) 0.369
PSADb, (ng/mL)/mL 0.23 (1.66) 0.21 (0.19) 0.156
MRI-positive lesion, n 107 45 0.043
Hemoglobinb, g/dL 14 (1) 14 (2) 0.432
Neutrophilsb, 103/mm3 6.07 (1.38) 5.90 (1.37) 0.159
Plateletsb, 103/mm3 213.4 (75.2) 207.3 (68.3) 0.410
Lymphocytesb, 103/mm3 2.80 (1.11) 3.09 (1.45) 0.064
Albuminb, mg/dL 4.3 (0.5) 4.3 (0.4) 0.629
NLRb 2.2 (1.40) 1.8 (1.40) 0.091
PLRb 73.52 (46.92) 66.94 (40.93) 0.155
PsNLRb, ng/mL 18.20 (152.90) 14.71 (11.39) 0.013
PsPLRb, ng/mL 642.33 (5073.83) 483.66 (496.27) 0.015
PsNPLRb, ng/mL 1308.70 (15 534.28) 984.81 (1303.82) 0.018
  
Variable AUC (95% CI) p-Value Cut-off, ng/mL Sensitivity, % Specificity, % PPV, % NPV, %
PSA, ng/mL 0.585 (0.517-0.653) 0.016 4 96.9 5.8 53.6 62.5
f/t PSA 0.317 (0.252-0.382) 0.001 NR NR NR NR NR
PV, mL 0.321 (0.265-0.377) 0.001 NR NR NR NR NR
PSAD, (ng/mL)/mL 0.722 (0.670-0.774) 0.001 0.175 67.9 62.8 67.2 63.5
Hb, g/dL 0.420 (0.362-0.479) 0.008 NR NR NR NR NR
Plt, 103/mm3 0.424 (0.365-0.482) 0.012 NR NR NR NR NR
NLR 0.487 (0.427-0.546) 0.658 NR NR NR NR NR
PLR 0.448 (0.389-0.506) 0.030 NR NR NR NR NR
PsNLR, ng/mL 0.521 (0.461-0.580) 0.498 NR NR NR NR NR
PsPLR, ng/mL 0.496 (0.437-0.555) 0.892 NR NR NR NR NR
PsNPLR, ng/mL 0.492 (0.433-0.552) 0.805 NR NR NR NR NR
  
Variable AUC (95% CI) p-Value Cut-off, ng/mL Sensitivity, % Specificity, % PPV, % NPV, %
PSA, ng/mL 0.589 (0.504-0.673) 0.045 4.00 96.9 3.1 66.8 33.3
f/t PSA 0.630 (0.525-0.735) 0.015 15.00 61.9 61.9 78.9 41.3
NLR 0.575 (0.488-0.661) 0.091 NR NR NR NR NR
PLR 0.563 (0.478-0.647) 0.155 NR NR NR NR NR
PsNLR, ng/mL 0.610 (0.528-0.691) 0.013 17.18 53.5 65.6 75.0 40.6
PsPLR, ng/mL 0.608 (0.527-0.689) 0.015 610.22 55.8 67.2 76.6 42.4
PsNPLR, ng/mL 0.604 (0.522-0.686) 0.018 1145.20 55.8 60.9 72.0 38.7
  
Category OR 95% CI p-Value
Age 1.087 1.038-1.137 <0.001
DRE-positive lesion 1.310 0.611-2.809 0.488
PSAD 91.612 4.987-1682.900 0.002
f/t PSA (<15.00) 0.334 0.163-0.683 0.003
MRI-positive lesion 13.091 6.475-26.467 <0.001
NLR 0.976 0.849-1.122 0.732
PLR 0.994 0.989-1.001 0.074
  
Category Model 1 Model 2
OR 95% CI p-Value OR 95% CI p-Value
Age 1.013 0.955-1.076 0.662 1.019 0.959-1.082 0.548
DRE-positive lesion 1.228 0.504-2.995 0.651 1.270 0.515-3.128 0.604
PSAD 1.691 0.084-34.240 0.732 1.264 0.059-27.207 0.881
f/t PSA (<15.00) 2.950 1.249-6.971 0.014 3.107 1.301-7.421 0.011
MRI-positive lesion 3.594 1.422-9.086 0.007 3.690 1.448-9.400 0.006
PsNLRa 0.429 0.180-1.019 0.055
PsPLRa 2.862 1.174-6.975 0.021
  
[1] Thompson IM, Ankerst DP, Chi C, Goodman PJ, Tangen CM, Lucia MS, et al. Assessing prostate cancer risk: results from the prostate cancer prevention trial. J Natl Cancer Inst 2006; 98:529-34.
doi: 10.1093/jnci/djj131 pmid: 16622122
[2] Catalona WJ, Southwick PC, Slawin KM, Partin AW, Brawer MK, Flanigan RC, et al. Comparison of percent free PSA, PSA density, and age-specific PSA cutoffs for prostate cancer detection and staging. Urology 2000; 56:255-60.
pmid: 10925089
[3] Ploussard G, Nicolaiew N, Marchand C, Terry S, Allory Y, Vacherot F, et al. Risk of repeat biopsy and prostate cancer detection after an initial extended negative biopsy: longitudinal follow-up from a prospective trial. BJU Int 2013; 111: 988-96.
doi: 10.1111/j.1464-410X.2012.11607.x pmid: 23452046
[4] Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 2017; 71:618-29.
doi: S0302-2838(16)30470-5 pmid: 27568654
[5] Hori S, Tanaka N, Nakai Y, Morizawa Y, Tatsumi Y, Miyake M, et al. Comparison of cancer detection rates by transrectal prostate biopsy for prostate cancer using two different nomograms based on patient’s age and prostate volume. Res Rep Urol 2019; 11:61-8.
[6] Gentile F, Ferro M, Della Ventura B, La Civita E, Liotti A, Cennamo M, et al. Optimized identification of high-grade prostate cancer by combining different PSA molecular forms and PSA density in a deep learning model. Diagnostics 2021; 11:335. https://doi.org/10.3390/diagnostics11020335.
doi: 10.3390/diagnostics11020335
[7] Bardan R, Dumache R, Dema A, Cumpanas A, Bucuras V. The role of prostatic inflammation biomarkers in the diagnosis of prostate diseases. Clin Biochem 2014; 47:909-15.
doi: 10.1016/j.clinbiochem.2014.02.008 pmid: 24560954
[8] Kohnen PW, Drach GW. Patterns of inflammation in prostatic hyperplasia: a histologic and bacteriologic study. J Urol 1979; 121:755-60.
doi: 10.1016/s0022-5347(17)56980-3 pmid: 88527
[9] Djavan B, Eckersberger E, Espinosa G, Kramer G, Handisurya A, Lee C, et al. Complex mechanisms in prostatic inflammatory response. Eur Urol Suppl 2009; 8:872-8.
doi: 10.1016/j.eursup.2009.11.003
[10] Di Silverio F, Gentile V, De Matteis A, Mariotti G, Giuseppe V, Luigi PA, et al. Distribution of inflammation, pre-malignant lesions, incidental carcinoma in histologically confirmed benign prostatic hyperplasia: a retrospective analysis. Eur Urol 2003; 43:164-75.
doi: 10.1016/s0302-2838(02)00548-1 pmid: 12565775
[11] Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357:539-45.
doi: 10.1016/S0140-6736(00)04046-0 pmid: 11229684
[12] de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Global Health 2020; 8: e180-90. https://doi.org/10.1016/S2214-109X(19)30488-7.
doi: 10.1016/S2214-109X(19)30488-7 pmid: 31862245
[13] Guo J, Fang J, Huang X, Liu Y, Yuan Y, Zhang X, et al. Prognostic role of neutrophil-to-lymphocyte ratio and platelet to lymphocyte ratio in prostate cancer: a meta-analysis of results from multivariate analysis. Int J Surg 2018; 60:216-23.
doi: 10.1016/j.ijsu.2018.11.020
[14] Minardi D, Scartozzi M, Montesi L, Santoni M, Burattini L, Bianconi M, et al. Neutrophil-to-lymphocyte ratio may be associated with the outcome in patients with prostate cancer. Springerplus 2015; 4:255. https://doi.org/10.1186/s40064-015-1036-1.
doi: 10.1186/s40064-015-1036-1 pmid: 26085975
[15] Kawahara T, Fukui S, Sakamaki K, Ito Y, Ito H, Kobayashi N, et al. Neutrophil-to-lymphocyte ratio predicts prostatic carcinoma in men undergoing needle biopsy. Oncotarget 2015; 6:32169-76.
doi: 10.18632/oncotarget.5081 pmid: 26359354
[16] Oh JJ, Kwon O, Lee JK, Byun S, Lee SE, Lee S, et al. Association of the neutrophil-to-lymphocyte ratio and prostate cancer detection rates in patients via contemporary multicore prostate biopsy. Asian J Androl 2016; 18:937-41.
doi: 10.4103/1008-682X.164198
[17] Adhyatma KP, Warli SM. Diagnostic value of platelet-tolymphocyte ratio in prostate cancer. Open Access Maced J Med Sci 2019; 7:1093-6.
doi: 10.3889/oamjms.2019.252
[18] Gokce MI, Hamidi N, Suer E, Tangal S, Huseynov A, Ibis A. Evaluation of neutrophil-to-lymphocyte ratio prior to prostate biopsy to predict biopsy histology: results of 1836 patients. Can Urol Assoc J 2015; 9:e761-5. https://doi.org/10.5489/cuaj.3091.
[19] Vidal AC, Howard LE, de Hoedt A, Cooperberg MR, Kane CJ, Aronson WJ, et al. Neutrophil, lymphocyte and platelet counts, and risk of prostate cancer outcomes in white and black men: results from the SEARCH database. Cancer Causes Control 2018; 29:581-8.
[20] Murray NP, Fuentealba C, Salazar A, Reyes E. Platelet-tolymphocyte ratio and systemic immune-inflammation index versus circulating prostate cells to predict significant prostate cancer at first biopsy. Turk J Urol 2020; 46:115-22.
doi: 10.5152/tud.2020.19203 pmid: 32053099
[21] Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21:309-22.
doi: 10.1016/j.ccr.2012.02.022 pmid: 22439926
[22] Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys 2003; 417:3-11.
doi: 10.1016/s0003-9861(03)00283-2 pmid: 12921773
[23] Li N. Platelets in cancer metastasis: to help the “villain” to do evil. Int J Cancer 2016; 138:2078-87.
doi: 10.1002/ijc.v138.9
[24] De Marzo AM, Marchi VL, Epstein JI, Nelson WG. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 1999; 155:1985-92.
doi: 10.1016/S0002-9440(10)65517-4 pmid: 10595928
[25] Platz EA, De Marzo AM. Epidemiology of inflammation and prostate cancer. J Urol 2004; 171:S36-40. https://doi.org/10.1097/01.ju.0000108131.43160.77.
doi: 10.1097/01.ju.0000108131.43160.77 pmid: 14713751
[26] Palapattu GS, Sutcliffe S, Bastain PJ, Platz EA. Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis 2004; 26:1170-81.
doi: 10.1093/carcin/bgh317
[27] Dennis LK, Lynch CF, Torner JC. Epidemiologic association between prostatitis and prostate cancer. Urology 2002; 60: 78-83.
pmid: 12100928
[28] Dennis LK, Dawson DV. Meta-analysis of measures of sexual activity and prostate cancer. Epidemiology 2002; 13:72-9.
pmid: 11805589
[29] Ferro M, Musi G, Matei DV, Mistretta AF, Luzzago S, Cozzi G, et al. Assessment of PSIM (prostatic systemic inflammatory markers) score in predicting pathologic features at robotic radical prostatectomy in patientswith low-risk prostate cancerwhomet the inclusion criteria for active surveillance. Diagnostics 2021; 11: 355. https://doi.org/10.3390/diagnostics11020355.
doi: 10.3390/diagnostics11020355
[30] Sun J, Zhang Z, OuYang J. A novel nomogram combined PIRADS v2 and neutrophil-to-lymphocyte ratio to predict the risk of clinically significant prostate cancer in men with PSA <10 ng/mL at first biopsy. Urol Oncol 2020; 38:401-9.
doi: 10.1016/j.urolonc.2019.12.006
[31] Kaynar M, Yildirim ME, Gul M, Kilic O, Ceylan K, Goktas S. Benign prostatic hyperplasia and prostate cancer differentiation via platelet to lymphocyte ratio. Cancer Biomarkers 2015; 15:317-23.
doi: 10.3233/CBM-150458 pmid: 25586096
[32] Khosropanah I, Rostami S, Heidari Bateni Z, Teimoori M, Khosrovpanah D. Prognostic value of neutrophil-to-lymphocyte ratio on pathologic findings of transrectal ultrasonography guided biopsy of prostate. Iran J Pathol 2018; 13:333-9.
[33] Kamali K, Ashrafi M, Shadpour P, Ameli M, Khayyamfar A, Abolhasani M, et al. The role of blood neutrophil count and the neutrophil-to-lymphocyte ratio as a predictive factor for prostate biopsy results. Urologia 2018; 85:158-62.
doi: 10.1177/0391560318766822 pmid: 29633657
[34] Huang TB, Mao SY, Lu SM, Yu JJ, Luan Y, Gu X, et al. Predictive value of neutrophil-to-lymphocyte ratio in diagnosis of prostate cancer among men who underwent template-guided prostate biopsy: a STROBE-compliant study. Medicine (Baltim) 2016; 95: e5307. https://doi.org/10.1097/MD.0000000000005307.
doi: 10.1097/MD.0000000000005307
[35] Bruunsgaard H, Ladelund S, Pedersen AN, Schroll M, J?rgensen T, Pedersen BK. Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people. Clin Exp Immunol 2003; 132:24-31.
doi: 10.1046/j.1365-2249.2003.02137.x pmid: 12653832
[36] Jahn JL, Giovannucci EL, Stampfer MJ. The high prevalence of undiagnosed prostate cancer at autopsy: implications for epidemiology and treatment of prostate cancer in the prostate-specific antigen-era. Int J Cancer 2015; 137: 2795-802.
doi: 10.1002/ijc.29408 pmid: 25557753
No related articles found!
[1] Allen C. Gao,James L. Mohler. In honor of Dr. Donald S. Coffey - Prostate cancer biology and therapy[J]. Asian Journal of Urology, 2019, 6(1): 1 -2 .
[2] Karen S. Sfanos,Srinivasan Yegnasubramanian,William G. Nelson,Tamara L. Lotan,Ibrahim Kulac,Jessica L. Hicks,Qizhi Zheng,Charles J. Bieberich,Michael C. Haffner,Angelo M. De Marzo. If this is true, what does it imply? How end-user antibody validation facilitates insights into biology and disease[J]. Asian Journal of Urology, 2019, 6(1): 10 -25 .
[3] Pei Zhao,Yezi Zhu,Liang Cheng,Jun Luo. Detection of androgen receptor (AR) and AR-V7 in small cell prostate carcinoma: Diagnostic and therapeutic implications[J]. Asian Journal of Urology, 2019, 6(1): 109 -113 .
[4] Liqun Zhou,Kaiwei Yang,Xuesong Li,Yi Ding,Dawei Mu,Hanzhong Li,Yong Yan,Jinyi Li,Dongwen Wang,Wei Li,Yulong Cong,Jiangping Gao,Kewei Ma,Yajun Xiao,Sheng Zhang,Hongyi Jiang,Weilie Hu,Qiang Wei,Xunbo Jin,Zhichen Guan,Qingyong Liu,Danfeng Xu,Xin Gao,Yongguang Jiang,Weimin Gan,Guang Sun,Qing Wang,Yanhui Liu,Jianquan Hou,Liping Xie,Xishuang Song,Fengshuo Jin,Jiafu Feng,Ming Cai,Zhaozhao Liang,Jie Zhang,Dingwei Ye,Lin Qi,Lulin Ma,Jianzhong Shou,Yuping Dai,Jianyong Shao,Ye Tian,Shizhe Hong,Tao Xu,Chuize Kong,Zefeng Kang,Yuexin Liu,Xun Qu,Benkang Shi,Shaobin Zheng,Yi Lin,Shujie Xia,Dong Wei,Jianbo Wu,Weiling Fu,Zhiping Wang,Jianbo Liang. Application of fluorescence in situ hybridization in the detection of bladder transitional-cell carcinoma: A multi-center clinical study based on Chinese population(☆ Hospitals 1 and 3w53 were all in the study group of Fluorescence in situ hybridization in prenatal genetic diseases and cancer detection in clinical research of Chinese population.)[J]. Asian Journal of Urology, 2019, 6(1): 114 -121 .
[5] Liang Dong,Richard C. Zieren,Wei Xue,Theo M. de Reijke,Kenneth J. Pienta. Metastatic prostate cancer remains incurable, why?[J]. Asian Journal of Urology, 2019, 6(1): 26 -41 .
[6] William B. Isaacs,Jianfeng Xu. Current progress and questions in germline genetics of prostate cancer[J]. Asian Journal of Urology, 2019, 6(1): 3 -9 .
[7] Cameron M. Armstrong,Allen C. Gao. Current strategies for targeting the activity of androgen receptor variants[J]. Asian Journal of Urology, 2019, 6(1): 42 -49 .
[8] Michael V. Fiandalo,Daniel T. Gewirth,James L. Mohler. Potential impact of combined inhibition of 3α-oxidoreductases and 5α-reductases on prostate cancer[J]. Asian Journal of Urology, 2019, 6(1): 50 -56 .
[9] Tyler Etheridge,Shivashankar Damodaran,Adam Schultz,Kyle A. Richards,Joseph Gawdzik,Bing Yang,Vincent Cryns,David F. Jarrard. Combination therapy with androgen deprivation for hormone sensitive prostate cancer: A new frontier[J]. Asian Journal of Urology, 2019, 6(1): 57 -64 .
[10] Gina Chia-Yi Chu,Leland W.K. Chung,Murali Gururajan,Chia-Ling Hsieh,Sajni Josson,Srinivas Nandana,Shian-Ying Sung,Ruoxiang Wang,Jason Boyang Wu,Haiyen E. Zhau. Regulatory signaling network in the tumor microenvironment of prostate cancer bone and visceral organ metastases and the development of novel therapeutics[J]. Asian Journal of Urology, 2019, 6(1): 65 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed