|
|
A preliminary study on rectal dose reduction associated with hyaluronic acid implantation in brachytherapy for prostate cancer |
Tairo Kashiharaa,*( ),Yuka Uragob,c,Hiroyuki Okamotob,Mihiro Takemorib,c,Hiroki Nakayamab,c,Shohei Mikasab,Tetsu Nakaichib,Kotaro Iijimab,Takahito Chibab,Junichi Kuwaharab,d,Satoshi Nakamurab,Weishan Changc,Yoshiyuki Matsuie,Hiroshi Igakia
|
aDepartment of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan bRadiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan cDepartment of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-ku, Tokyo, Japan dDepartment of Radiological Technology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan eDepartment of Urological Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan |
|
|
Abstract Objectives: Hydrogel spacer (HS) was developed to reduce rectal toxicities caused by radiotherapy, but has been reported to cause major adverse events. Our institute has attempted to introduce a hyaluronic acid (HA) as an alternative spacer. This study aimed to compare rectal doses and geometric distributions between the HS and HA implantation in prostate cancer. Methods: HS and HA were inserted in 20 and 18 patients undergoing high-dose brachytherapy, respectively. The rectum spacer volumes injected were 10 mL and 22 mL, respectively. In the treatment planning system, 13.5 Gy was administered with common catheter positions. The rectal dose indices were assessed between the spacer groups for dosimetry evaluation. Distances between the prostate and rectum and configurations of the spacers were compared. Results: The mean doses irradiated to 0.1 and 2 mL of the rectum were 10.45 Gy and 6.71 Gy for HS, and 6.73 Gy and 4.90 Gy for HA (p<0.001). The mean minimum distances between the prostate and rectum were 1.23 cm and 1.79 cm for HS and HA, respectively (p<0.05). Geometrical configuration comparisons revealed that HA has a higher ability to expand the space than HS. Conclusion: The rectal dose reduction ability of HA is significantly greater than that of HS, suggesting its potential as a new spacer.
|
Received: 17 March 2022
Available online: 20 April 2024
|
Corresponding Authors:
* E-mail address: tkashiha@ncc.go.jp (T. Kashihara).
|
About author:: 1 These two authors contributed equally to this work. |
|
|
Factor | HS group | HA group | p-Value | Age, median (range), year | 67 (55-80) | 70 (53-79) | 0.67 | PSA, median (range), ng/mL | 9.96 (4.10-97.50) | 13.40 (4.70-413.00) | 0.12 | Clinical stage, n | | | 0.27 | T1c | 4 | 3 | T2a | 10 | 5 | T2b | 1 | 3 | T2c | 2 | 0 | T3a | 2 | 4 | T3b | 1 | 3 | Gleason score, n | | | 0.79 | 3+3 | 1 | 1 | 3+4 | 7 | 5 | 4+3 | 8 | 5 | 4+4 | 1 | 1 | 4+5 | 3 | 5 | 5+4 | 0 | 1 | The D'Amico risk classification, n | | | 0.62 | Low | 2 | 1 | Intermediate | 12 | 9 | High | 6 | 8 | Radiotherapy modality, n | | | 1.00 | HDRB monotherapy | 16 | 14 | HDRB plus IMRT | 4 | 4 | Use of hormonal therapy, n | | | 0.82 | Yes | 15 | 15 | No | 5 | 3 |
|
Patient demographic and clinical characteristics.
|
|
Comparisons of rectum Dx (x=0.1 mL, 1 mL, or 2 mL) with 2 types of the spacers. HS, hydrogel spacer; HA, hyaluronic acid. The marker (°) indicates the minimum distance in each patient between the prostate and rectum, and error bars indicate two standard deviations calculated from all results for each distance.
|
Factora | HS (range, variance) | HA (range, variance) | p-Value | D0.1 mL, Gy | 10.45 (5.60-33.80, 34.21) | 6.73 (4.50-13.22, 3.39) | <0.001 | D1 mL, Gy | 7.54 (4.93-13.14, 3.38) | 5.38 (4.03-8.27, 0.80) | <0.001 | D2 mL, Gy | 6.71 (4.59-10.10, 1.96) | 4.90 (3.74-6.88, 0.47) | <0.001 | V1 Gy, mL | 48.74 (22.83-66.40, 106.26) | 44.08 (21.53-74.92, 185.76) | 0.250 | V2 Gy, mL | 37.68 (20.97-61.55, 82.28) | 30.68 (17.35-48.15, 77.54) | 0.025 | V3 Gy, mL | 23.15 (12.35-35.75, 45.78) | 15.45 (6.17-24.33, 22.30) | <0.001 | V4 Gy, mL | 13.01 (4.64-24.48, 28.63) | 5.98 (1.09-10.83, 6.60) | <0.001 | V5 Gy, mL | 7.01 (0.84-16.46, 16.09) | 1.83 (0.00-5.23, 2.20) | <0.001 | V6 Gy, mL | 3.65 (0.01-11.27, 8.13) | 0.53 (0.00-3.08, 0.60) | <0.001 | V7 Gy, mL | 1.86 (0.00-7.61, 3.77) | 0.17 (0.00-1.88, 0.18) | <0.001 | V8 Gy, mL | 0.92 (0.00-4.98, 1.70) | 0.08 (0.00-1.15, 0.068) | <0.001 | V9 Gy, mL | 0.47 (0.00-3.09, 0.73) | 0.04 (0.00-0.68, 0.024) | 0.001 | V10 Gy, mL | 0.27 (0.00-2.05, 0.32) | 0.02 (0.00-0.41, 0.0088) | 0.004 | V11 Gy, mL | 0.16 (0.00-1.60, 0.15) | 0.01 (0.00-0.26, 0.0035) | 0.009 | V12 Gy, mL | 0.11 (0.00-1.27, 0.083) | 0.01 (0.00-0.17, 0.0015) | 0.018 | V13 Gy, mL | 0.08 (0.00-1.03, 0.052) | 0.01 (0.00-0.11, 0.00063) | 0.038 |
|
Comparisons of the mean rectal dose indices between the two types of spacers.
|
|
Comparisons of rectum dose parameters of Vy (y=1 Gy, 3 Gy, …, or 13 Gy) with two types of the spacers. (A) Results for Vy (y=1 Gy, 3 Gy, …, or 6 Gy); (B) Results for Vy (y=7 Gy, 8 Gy, …, or 13 Gy). HS, hydrogel spacer; HA, hyaluronic acid. The marker (°) indicates the minimum distance in each patient between the prostate and rectum, and error bars indicate two standard deviations calculated from all results for each distance.
|
|
Minimum distances between the prostate and rectum as a function of the spacer volume in all axial planes of computed tomography scans for each patient. Error bars indicate two standard deviations calculated from all results for each distance. HS, hydrogel spacer; HA, hyaluronic acid.
|
|
Fused contours of the prostate (red lines) and spacers (cyan lines) and representative structure of each type of spacer (blue line). (A) Hydrogel spacer; (B) Hyaluronic acid. Top: axial section; bottom left: sagittal section; bottom right: coronal section.
|
[1] |
Beesley LJ, Morgan TM, Spratt DE, Singhal U, Feng FY, Furgal AC, et al. Individual and population comparisons of surgery and radiotherapy outcomes in prostate cancer using Bayesian multistate models. JAMA Netw Open 2019; 2:e187765. https://doi.org/10.1001/jamanetworkopen.2018.7765.
doi: 10.1001/jamanetworkopen.2018.7765
|
[2] |
Wallis CJD, Zhao Z, Huang LC, Penson DF, Koyama T, Kaplan SH, et al. Association of treatment modality, functional outcomes, and baseline characteristics with treatment-related regret amongmen with localized prostate cancer. JAMA Oncol 2021; 18: e215160. https://doi.org/10.1001/jamaoncol.2021.5160.
|
[3] |
Kashihara T, Nakamura S, Wakita A, Okamoto H, Inaba K, Umezawa R, et al. Importance of the site of positive surgical margin in salvage external beam radiation therapy for biochemical recurrence of prostate cancer after radical prostatectomy. Cancer Med 2018; 7:1723e30.
doi: 10.1002/cam4.2018.7.issue-5
|
[4] |
Takemoto S, Shibamoto Y, Ayakawa S, Nagai A, Hayashi A, Ogino H, et al. Treatment and prognosis of patients with late rectal bleeding after intensity-modulated radiation therapy for prostate cancer. Radiat Oncol 2012; 7:87. https://doi.org/10.1186/1748-717X-7-87.
doi: 10.1186/1748-717X-7-87
pmid: 22691293
|
[5] |
Rodda S, Tyldesley S, Morris WJ, Keyes M, Halperin R, Pai H, et al. ASCENDE-RT: an analysis of treatment-related morbidity for a randomized trial comparing a low-dose-rate brachytherapy boost with a dose-escalated external beam boost for high- and intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys 2017; 98:286e95.
doi: 10.1016/j.ijrobp.2017.01.008
|
[6] |
Wallner K, Roy J, Harrison L. Tumor control and morbidity following transperineal iodine 125 implantation for stage T1/T2 prostatic carcinoma. J Clin Oncol 1996; 14:449e53.
pmid: 8636756
|
[7] |
Jawad MS, Dilworth JT, Gustafson GS, Ye H, Wallace M, Martinez A, et al. Outcomes associated with 3 treatment schedules of high-dose-rate brachytherapymonotherapy for favorablerisk prostate cancer. Int J RadiatOncol Biol Phys 2016; 94:657e66.
|
[8] |
Kragelj B, Zlatic J, Zaletel-Kragelj L. Avoidance of late rectal toxicity after high-dose-rate brachytherapy boost treatment for prostate cancer. Brachytherapy 2017; 16:193e200.
doi: S1538-4721(16)30573-6
pmid: 27908678
|
[9] |
Ling DC, Chen KS, Benoit RM, Beriwal S, Smith RP. Long-term patient-reported rectal bleeding and bowel-related quality of life after Cs-131 prostate brachytherapy. Int J Radiat Oncol Biol Phys 2019; 104:622e30.
doi: 10.1016/j.ijrobp.2019.02.056
|
[10] |
Konishi K, Yoshioka Y, Isohashi F, Sumida I, Kawaguchi Y, Kotsuma T, et al. Correlation between dosimetric parameters and late rectal and urinary toxicities in patients treated with high-dose-rate brachytherapy used as monotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2009; 75:1003e7.
doi: 10.1016/j.ijrobp.2008.12.051
|
[11] |
Leong N, Pai HH, Morris WJ, Keyes M, Pickles T, Tyldesley S, et al. Rectal ulcers and rectoprostatic fistulas after 125I low dose rate prostate brachytherapy. J Urol 2016; 195:1811e6.
doi: 10.1016/j.juro.2015.12.095
|
[12] |
Moulton CR, House MJ, Lye V, Tang CI, Krawiec M, Joseph DJ, et al. Prostate external beam radiotherapy combined with high-dose-rate brachytherapy: dose-volume parameters from deformably-registered plans correlate with late gastrointestinal complications. Radiat Oncol 2016; 11:144. https://doi.org/10.1186/s13014-016-0719-2.
pmid: 27799048
|
[13] |
Armstrong N, Bahl A, Pinkawa M, Ryder S, Ahmadu C, Ross J, et al. SpaceOAR hydrogel spacer for reducing radiation toxicity during radiotherapy for prostate cancer. A systematic review. Urology 2021; 156:e74e85. https://doi.org/10.1016/j.urology.2021.05.013.
|
[14] |
Vanneste BG, Hoffmann AL, van Lin EN, Van De Voorde L, Pinkawa M, Lambin P. Who will benefit most from hydrogel rectum spacer implantation in prostate cancer radiotherapy? A model-based approach for patient selection. Radiother Oncol 2016; 121:118e23.
doi: S0167-8140(16)34290-6
pmid: 27647458
|
[15] |
Fischer-Valuck BW, Chundury A, Gay H, Bosch W, Michalski J. Hydrogel spacer distribution within the perirectal space in patients undergoing radiotherapy for prostate cancer: impact of spacer symmetry on rectal dose reduction and the clinical consequences of hydrogel infiltration into the rectal wall. Pract Radiat Oncol 2017; 7:195e202.
doi: S1879-8500(16)30222-3
pmid: 28089528
|
[16] |
Miller LE, Efstathiou JA, Bhattacharyya SK, Payne HA, Woodward E, Pinkawa M. Association of the placement of a perirectal hydrogel spacer with the clinical outcomes of men receiving radiotherapy for prostate cancer: a systematic review and meta-analysis. JAMA Netw Open 2020; 3:e208221. https://doi.org/10.1001/jamanetworkopen.2020.8221.
doi: 10.1001/jamanetworkopen.2020.8221
|
[17] |
Hamstra DA, Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, et al. Continued benefit to rectal separation for prostate radiation therapy: final results of a phase III trial. Int J Radiat Oncol Biol Phys 2017; 97:976e85.
doi: 10.1016/j.ijrobp.2016.12.024
|
[18] |
Strom TJ, Wilder RB, Fernandez DC, Mellon EA, Saini AS, Hunt DC, et al. A dosimetric study of polyethylene glycol hydrogel in 200 prostate cancer patients treated with highdose rate brachytherapy±intensity modulated radiation therapy. Radiother Oncol 2014; 111:126e31.
doi: 10.1016/j.radonc.2014.02.011
|
[19] |
Wu SY, Boreta L, Wu A, Cheung JP, Cunha JAM, Shinohara K, et al. Improved rectal dosimetry with the use of SpaceOAR during high-dose-rate brachytherapy. Brachytherapy 2018; 17: 259e64.
doi: S1538-4721(17)30489-0
pmid: 29203149
|
[20] |
Saigal K, Schofield D, Nguyen N, Pham H, Biagioli M. SpaceOAR hydrogel improves neurovascular bundle dosimetry in MRI guided HDR brachytherapy. Brachytherapy 2019; 18:S63e4. https://doi.org/10.1016/j.brachy.2019.04.134.
|
[21] |
Aminsharifi A, Kotamarti S, Silver D, Schulman A. Major complications and adverse events related to the injection of the SpaceOAR hydrogel system before radiotherapy for prostate cancer: review of the manufacturer and user facility device experience database. J Endourol 2019; 33:868e71.
|
[22] |
Teh AY, Ko HT, Barr G, Woo HH. Rectal ulcer associated with SpaceOAR hydrogel insertion during prostate brachytherapy. BMJ Case Rep 2014; 2014: bcr2014206931. https://doi.org/10.1136/bcr-2014-206931.
doi: 10.1136/bcr-2014-206931
|
[23] |
Kashihara T, Inaba K, Komiyama M, Nakayama H, Iijima K, Nishioka S, et al. The use of hyperbaric oxygen to treat actinic rectal fistula after SpaceOAR use and radiotherapy for prostate cancer: a case report. BMC Urol 2020; 20:196. https://doi.org/10.1186/s12894-020-00767-3.
|
[24] |
Kashihara T, Murakami N, Tselis N, Kobayashi K, Tsuchida K, Shima S, et al. Hyaluronate gel injection for rectum dose reduction in gynecologic high-dose-rate brachytherapy: initial Japanese experience. J Radiat Res 2019; 60:501e8.
doi: 10.1093/jrr/rrz016
pmid: 31034570
|
[25] |
Iijima K, Murakami N, Nakamura S, Nishioka S, Chiba T, Kuwahara J, et al. Configuration analysis of the injection position and shape of the gel spacer in gynecologic brachytherapy. Brachytherapy 2021; 20:95e103.
doi: 10.1016/j.brachy.2020.08.021
pmid: 33011091
|
[26] |
Murakami N, Nakamura S, Kashihara T, Kato T, Shibata Y, Takahashi K, et al. Hyaluronic acid gel injection in rectovaginal septum reduced incidence of rectal bleeding in brachytherapy for gynecological malignancies. Brachytherapy 2020; 19:154e61.
doi: S1538-4721(19)30624-5
pmid: 31879238
|
[27] |
Lin YH, Loon W, Tacey M, Bolton D, Tan A, Chan Y, et al. Impact of hydrogel and hyaluronic acid rectal spacer on rectal dosimetry and toxicity in low-dose-rate prostate brachytherapy: a multi-institutional analysis of patients’ outcomes. J Contemp Brachytherapy 2021; 13:605e14.
doi: 10.5114/jcb.2021.112110
|
[28] |
Prada PJ, Fernández J, Martinez AA, de la Rúa A, Gonzalez JM, Fernandez JM, et al. Transperineal injection of hyaluronic acid in anterior perirectal fat to decrease rectal toxicity from radiation delivered with intensity modulated brachytherapy or EBRT for prostate cancer patients. Int J Radiat Oncol Biol Phys 2007;69:95e102.
|
[29] |
Chapet O, Decullier E, Bin S, Faix A, Ruffion A, Jalade P, et al. Prostate hypofractionated radiation therapy with injection of hyaluronic acid: acute toxicities in a phase 2 study. Int J Radiat Oncol Biol Phys 2015; 91:730e6.
doi: 10.1016/j.ijrobp.2014.11.027
|
[30] |
Chao M, Ow D, Ho H, Chan Y, Joon DL, Spencer S, et al. Improving rectal dosimetry for patients with intermediate and high-risk prostate cancer undergoing combined high-dose-rate brachytherapy and external beam radiotherapy with hydrogel space. J Contemp Brachytherapy 2019; 11:8e13.
doi: 10.5114/jcb.2019.82836
|
[31] |
Prada PJ, Gonzalez H, Menéndez C, Llaneza A, Fernández J, Santamarta E, et al. Transperineal injection of hyaluronic acid in the anterior perirectal fat to decrease rectal toxicity from radiation delivered with lowdose- rate brachytherapy for prostate cancer patients. Brachytherapy 2009;8:210e7.
|
[32] |
D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998; 280:969e74.
doi: 10.1001/jama.280.11.969
|
[33] |
Boston Scientific Corporation. Product & procedure SpaceOARTM hydrogel. 2021. https://www.bostonscientific.com/en-US/medical-specialties/urology/prostate-health/prostate-cancer/spaceoar-hydrogel/product-and-procedure.html. [Accessed 17 November 2021].
|
[34] |
Prada PJ, Cardenal J, Blanco AG, Anchuelo J, Ferri M, Fernández G, et al. High-dose-rate interstitial brachytherapy as monotherapy in one fraction for the treatment of favorable stage prostate cancer: toxicity and long-term biochemical results. Radiother Oncol 2016; 119:411e6.
doi: 10.1016/j.radonc.2016.04.006
pmid: 27118583
|
[35] |
Pinkawa M, Berneking V, Schlenter M, Krenkel B, Eble MJ. Quality of life after radiation therapy for prostate cancer with a hydrogel spacer: 5-year results. Int J Radiat Oncol Biol Phys 2017; 99:374e7.
doi: 10.1016/j.ijrobp.2017.05.035
|
[36] |
Whalley D, Hruby G, Alfieri F, Kneebone A, Eade T. SpaceOAR hydrogel in dose-escalated prostate cancer radiotherapy: rectal dosimetry and late toxicity. Clin Oncol 2016; 28: e148e54. https://doi.org/10.1016/j.clon.2016.05.005.
doi: 10.1016/j.clon.2016.05.005
|
[37] |
Morita M, Fukagai T, Hirayama K, Yamatoya J, Noguchi T, Ogawa Y, et al. Placement of Space OAR hydrogel spacer for prostate cancer patients treated with iodine-125 low-doserate brachytherapy. Int J Urol 2020; 27:60e6.
doi: 10.1111/iju.v27.1
|
[38] |
Baghwala A, Khwaja S, Boopathy R. Reduction in rectal dose with the use of SpaceOAR hydrogel to treat prostate adenocarcinoma with HDR brachytherapy. Med Phys 2019; 46:e533. https://doi.org/10.1002/mp.13589.
|
[39] |
Kobayashi R, Murakami N, Chiba T, Okuma K, Inaba K, Takahashi K, et al. Effect of hyaluronate acid injection on dose-volume parameters in brachytherapy for cervical cancer. Adv Radiat Oncol 2022; 7:100918. https://doi.org/10.1016/j.adro.2022.100918.
|
[40] |
Hong A, Ischia J, Chao M. Case report: reversal of hyaluronic acid rectal wall infiltration with hyaluronidase. Front Oncol 2022; 12:870388. https://doi.org/10.3389/fonc.2022.870388.
|
[1] |
Stefano Salciccia, Marco Frisenda, Giulio Bevilacqua, Pietro Viscuso, Paolo Casale, Ettore De Berardinis, Giovanni Battista Di Pierro, Susanna Cattarino, Gloria Giorgino, Davide Rosati, Francesco Del Giudice, Alessandro Sciarra, Gianna Mariotti, Alessandro Gentilucci. Prognostic role of platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio in patients with non-metastatic and metastatic prostate cancer: A meta-analysis and systematic review[J]. Asian Journal of Urology, 2024, 11(2): 191-207. |
[2] |
Victor Chalfant,Michael L. BluteJr.,Peter Silberstein. Treatment trends of muscle invasive bladder cancer: Evidence from the Surveillance, Epidemiology, and End Results database, 1988 to 2013[J]. Asian Journal of Urology, 2023, 10(1): 9-18. |
[3] |
Akshar Patel,Arash O. Naghavi,Peter A. Johnstone,Philippe E. Spiess,G. Daniel Grass. Updates in the use of radiotherapy in the management of primary and locally-advanced penile cancer[J]. Asian Journal of Urology, 2022, 9(4): 389-406. |
[4] |
Chinna Babu Dracham,Narendra Kumar,Santosh Kumar,Arun Elangovan,Budhi Singh Yadav,Ravimohan S. Mavuduru,Anupam Lal,Pramod K. Gupta,Rakesh Kapoor. A phase II study of neoadjuvant chemotherapy followed by organ preservation in patients with muscle-invasive bladder cancer[J]. Asian Journal of Urology, 2022, 9(3): 318-328. |
[5] |
Yuigi Yuminaga,Chris Rothe,Jonathan Kam,Kieran Beattie,Mohan Arianayagam,Chuong Bui,Bertram Canagasingham,Richard Ferguson,Mohamed Khadra,Raymond Ko,Ken Le,Diep Nguyen,Celi Varol,Matthew Winter. 68Ga-PSMA PET/CT versus CT and bone scan for investigation of PSA failure post radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(2): 170-175. |
[6] |
Mengzhu Liu,Kun Jin,Shi Qiu,Pengyong Xu,Mingming Zhang,Wufeng Cai,Xiaonan Zheng,Lu Yang,Qiang Wei. Oncological outcomes of patients with ductal adenocarcinoma of the prostate receiving radical prostatectomy or radiotherapy[J]. Asian Journal of Urology, 2021, 8(2): 227-234. |
[7] |
Michel Bolla,Ann Henry,Malcom Mason,Thomas Wiegel. The role of radiotherapy in localised and locally advanced prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 153-161. |
[8] |
Rei Umezawa,Koji Inaba,Satoshi Nakamura,Akihisa Wakita,Hiroyuki Okamoto,Keisuke Tsuchida,Tairo Kashihara,Kazuma Kobayashi,Ken Harada,Kana Takahashi,Naoya Murakami,Yoshinori Ito,Hiroshi Igaki,Keiichi Jingu,Jun Itami. Dose escalation of external beam radiotherapy for high-risk prostate cancer—Impact of multiple high-risk factor[J]. Asian Journal of Urology, 2019, 6(2): 192-199. |
[9] |
Zachary B. Koloff, Daniel A. Hamstra, John T. Wei, Jeffrey S. Montgomery, Scott A. Tomlins, Angela J. Wu, Todd M. Morgan, Javed Siddiqui, Kellie Paich, Arul M. Chinnaiyan, Felix Y. Feng, Alon Z. Weizer, Lakshmi P. Kunju, Brent K. Hollenbeck, David C. Miller, Ganesh S. Palapattu, Rohit Mehra. Impact of tertiary Gleason pattern 5 on prostate cancer aggressiveness: Lessons from a contemporary single institution radical prostatectomy series[J]. Asian Journal of Urology, 2015, 2(1): 53-58. |
|
|
|
|