|
|
New imaging technologies for robotic kidney cancer surgery |
Stefano Puliattia,b,*( ),Ahmed Eissac,Enrico Checcuccid,Pietro Piazzae,Marco Amatoa,Stefania Ferrettia,Simone Scarcellaf,Juan Gomez Rivasg,h,Mark Taratking,Josè Marencog,Ines Belenchon Rivero,Karl-Friedrich Kowalewski,Giovanni Cacciamani,Ahmed El-Sherbinyc,Ahmed Zoeirc,Abdelhamid M. El-Bahnasyc,Ruben De Grooteb,Alexandre Mottrieb,Salvatore Micalia
|
aUrology Department, University of Modena & Reggio Emilia, Modena, Italy bORSI Academy, Melle, Belgium cUrology Department, Faculty of Medicine, Tanta University, Tanta, Egypt dDepartment of Surgery, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy eDivision of Urology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy fDepartment of Urology, Polytechnic University of Marche Region, Umberto I Hospital “Ospedali Riuniti”, Ancona, Italy gUro-technology and SoMe Working Group of the Young Academic Urologists Working Party, European Association of Urology, Arnhem, the Netherlands hDepartment of Urology, Hospital Clinico San Carlos, Madrid, Spain iInstitute for Urology and Reproductive Health, Sechenov University, Moscow, Russia jDepartment of Urology, Fundación Instituto Valenciano de Oncologı´a, Valencia, Spain kUrology and Nephrology Department, Virgen del Rocı´o University Hospital, Manuel Siurot Sin Numero, Seville, Spain lDepartment of Urology and Urological Surgery, University Medical Centre Mannheim, Mannheim, Germany mUSC Institute of Urology, University of Southern California, Los Angeles, CA, USA nDepartment of Urology, Onze-Lieve-Vrouwziekenhuis, Aalst, Belgium |
|
|
Abstract Objective: Kidney cancers account for approximately 2% of all newly diagnosed cancer in 2020. Among the primary treatment options for kidney cancer, urologist may choose between radical or partial nephrectomy, or ablative therapies. Nowadays, robotic-assisted partial nephrectomy (RAPN) for the management of renal cancers has gained popularity, up to being considered the gold standard. However, RAPN is a challenging procedure with a steep learning curve. Methods: In this narrative review, different imaging technologies used to guide and aid RAPN are discussed. Results: Three-dimensional visualization technology has been extensively discussed in RAPN, showing its value in enhancing robotic-surgery training, patient counseling, surgical planning, and intraoperative guidance. Intraoperative imaging technologies such as intracorporeal ultrasound, near-infrared fluorescent imaging, and intraoperative pathological examination can also be used to improve the outcomes following RAPN. Finally, artificial intelligence may play a role in the field of RAPN soon. Conclusion: RAPN is a complex surgery; however, many imaging technologies may play an important role in facilitating it.
|
Received: 26 November 2021
Available online: 20 July 2022
|
Corresponding Authors:
Stefano Puliatti
E-mail: Stefano.puliatti@unimore.it
|
|
|
[1] |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71:209e49.
|
[2] |
Padala SA, Barsouk A, Thandra KC, Saginala K, Mohammed A, Vakiti A, et al. Epidemiology of renal cell carcinoma. World J Oncol 2020; 11:79e87.
doi: 10.14740/wjon1279
|
[3] |
Sung WW, Ko PY, Chen WJ, Wang SC, Chen SL. Trends in the kidney cancer mortality-to-incidence ratios according to health care expenditures of 56 countries. Sci Rep 2021; 11: 1479. https://doi.org/10.1038/s41598-020-79367-y.
doi: 10.1038/s41598-020-79367-y
|
[4] |
McDonald M, Shirk JD. Application of three-dimensional virtual reality models to improve the pre-surgical plan for robotic partial nephrectomy. J Soc Laparoendosc Surg 2021; 25:e2021.00011. https://doi.org/10.4293/JSLS.2021.00011.
|
[5] |
Herr HW. Surgical management of renal tumors: a historical perspective. Urol Clin North Am 2008; 35:543e9.
doi: 10.1016/j.ucl.2008.07.010
|
[6] |
Clayman RV, Kavoussi LR, Soper NJ, Dierks SM, Meretyk S, Darcy MD, et al. Laparoscopic nephrectomy:initial case report. J Urol 1991; 146:278e82.
|
[7] |
Asimakopoulos AD, Miano R, Annino F, Micali S, Spera E, Iorio B, et al. Robotic radical nephrectomy for renal cell carcinoma: a systematic review. BMC Urol 2014; 14:75. https://doi.org/10.1186/1471-2490-14-75.
doi: 10.1186/1471-2490-14-75
pmid: 25234265
|
[8] |
Cacciamani GE, Medina LG, Gill T, Abreu A, Sotelo R, Artibani W, et al. Impact of surgical factors on robotic partial nephrectomy outcomes: comprehensive systematic review and meta-analysis. J Urol 2018; 200:258e74.
doi: S0022-5347(18)42791-7
pmid: 29580709
|
[9] |
Carbonara U, Crocerossa F, Campi R, Veccia A, Cacciamani GE, Amparore D, et al. Retroperitoneal robotassisted partial nephrectomy: a systematic review and pooled analysis of comparative outcomes. Eur Urol Open Sci 2022; 40:27e37.
|
[10] |
Macek P, Cathelineau X, Barbe YP, Sanchez-Salas R, Rodriguez AR. Robotic-assisted partial nephrectomy: techniques to improve clinical outcomes. Curr Urol Rep 2021; 22:51. https://doi.org/10.1007/s11934-021-01068-4.
doi: 10.1007/s11934-021-01068-4
pmid: 34622373
|
[11] |
May AM, Guduru A, Fernelius J, Raza SJ, Davaro F, Siddiqui SA, et al. Current trends in partial nephrectomy after guideline release: health disparity for small renal mass. Kidney Cancer 2019; 3:183e8.
doi: 10.3233/KCA-190066
|
[12] |
Zini L, Patard JJ, Capitanio U, Mejean A, Villers A, de La Taille A, et al. The use of partial nephrectomy in European tertiary care centers. Eur J Surg Oncol 2009; 35:636e42.
doi: 10.1016/j.ejso.2008.07.008
pmid: 18775626
|
[13] |
Pak JS, Lee JJ, Bilal K, Finkelstein M, Palese MA. Utilization trends and outcomes up to 3 months of open, laparoscopic, and robotic partial nephrectomy. J Robot Surg 2017; 11:223e9.
doi: 10.1007/s11701-016-0650-4
|
[14] |
Raheem AA, Alowidah I, Capitanio U, Montorsi F, Larcher A, Derweesh I, et al. Warm ischemia time length during onclamp partial nephrectomy: dose it really matter? Minerva Urol Nephrol 2022; 74:194e202.
|
[15] |
Zargar H, Akca O, Ramirez D, Brandao LF, Laydner H, Krishnan J, et al. The impact of extended warm ischemia time on late renal function after robotic partial nephrectomy. J Endourol 2015; 29:444e8.
doi: 10.1089/end.2014.0557
|
[16] |
Maddox MM, Feibus A, Liu J, Wang J, Thomas R, Silberstein JL. 3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study. J Robot Surg 2018; 12:27e33.
doi: 10.1007/s11701-017-0680-6
|
[17] |
Mazzone E, Puliatti S, Amato M, Bunting B, Rocco B, Montorsi F, et al. A systematic review and meta-analysis on the impact of proficiency-based progression simulation training on performance outcomes. Ann Surg 2021; 274:281e9.
doi: 10.1097/SLA.0000000000004650
pmid: 33630473
|
[18] |
El Sherbiny A, Eissa A, Ghaith A, Morini E, Marzotta L, Sighinolfi MC, et al. Training in urological robotic surgery. Future perspectives. Arch Esp Urol 2018; 71:97e107.
pmid: 29336338
|
[19] |
Smith B, Dasgupta P. 3D printing technology and its role in urological training. World J Urol 2020; 38:2385e91.
doi: 10.1007/s00345-019-02995-1
|
[20] |
Ghazi A, Melnyk R, Hung AJ, Collins J, Ertefaie A, Saba P, et al. Multi-institutional validation of a perfused robotassisted partial nephrectomy procedural simulation platform utilizing clinically relevant objective metrics of simulators (CROMS). BJU Int 2021; 127:645e53.
doi: 10.1111/bju.15246
|
[21] |
Monda SM, Weese JR, Anderson BG, Vetter JM, Venkatesh R, Du K, et al. Development and validity of a silicone renal tumor model for robotic partial nephrectomy training. Urology 2018; 114:114e20.
doi: 10.1016/j.urology.2018.01.030
|
[22] |
Hongo F, Fujihara A, Inoue Y, Yamada Y, Ukimura O. Threedimensional-printed soft kidney model for surgical simulation of robot-assisted partial nephrectomy: a proof-ofconcept study. Int J Urol 2021; 28:870e1.
doi: 10.1111/iju.14560
|
[23] |
von Rundstedt FC, Scovell JM, Agrawal S, Zaneveld J, Link RE. Utility of patient-specific silicone renal models for planning and rehearsal of complex tumour resections prior to robot-assisted laparoscopic partial nephrectomy. BJU Int 2017; 119:598e604.
doi: 10.1111/bju.13712
|
[24] |
Kwon Kim J, Ryu H, Kim M, Kwon E, Lee H, Joon Park S, et al. Personalised three-dimensional printed transparent kidney model for robot-assisted partial nephrectomy in patients with complex renal tumours (R.E.N.A.L. nephrometry score _7): a prospective case-matched study. BJU Int 2021; 127: 567e74.
doi: 10.1111/bju.15275
|
[25] |
Wake N, Rosenkrantz AB, Huang R, Park KU, Wysock JS, Taneja SS, et al. Patient-specific 3D printed and augmented reality kidney and prostate cancer models: impact on patient education. 3D Print Med 2019; 5:4. https://doi.org/10.1186/s41205-019-0041-3.
doi: 10.1186/s41205-019-0041-3
|
[26] |
Silberstein JL, Maddox MM, Dorsey P, Feibus A, Thomas R, Lee BR. Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: a pilot study. Urology 2014; 84:268e73.
doi: 10.1016/j.urology.2014.03.042
pmid: 24962843
|
[27] |
Teishima J, Takayama Y, Iwaguro S, Hayashi T, Inoue S, Hieda K, et al. Usefulness of personalized three-dimensional printed model on the satisfaction of preoperative education for patients undergoing robot-assisted partial nephrectomy and their families. Int Urol Nephrol 2018; 50:1061e6.
doi: 10.1007/s11255-018-1881-2
pmid: 29744824
|
[28] |
Porpiglia F, Bertolo R, Checcucci E, Amparore D, Autorino R, Dasgupta P, et al. Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists’ and patients’ perception. World J Urol 2018; 36:201e7.
doi: 10.1007/s00345-017-2126-1
|
[29] |
Cacciamani GE, Gill T, Medina L, Ashrafi A, Winter M, Sotelo R, et al. Impact of host factors on robotic partial nephrectomy outcomes: comperhesive systematic review and meta-analysis. J Urol 2018; 200:716e30.
doi: S0022-5347(18)43082-0
pmid: 29730203
|
[30] |
Bianchi L, Schiavina R, Bortolani B, Cercenelli L, Gaudiano C, Carpani G, et al. Interpreting nephrometry scores with threedimensional virtual modelling for better planning of robotic partial nephrectomy and predicting complications. Urol Oncol Semin Orig Investig 2021; 39:836.e1e9. https://doi.org/10.1016/j.urolonc.2021.07.024.
|
[31] |
Rocco B, Sighinolfi MC, Menezes AD, Eissa A, Inzillo R, Sandri M, et al. Three-dimensional virtual reconstruction with DocDo, a novel interactive tool to score renal mass complexity. BJU Int 2020; 125:761e2.
doi: 10.1111/bju.15049
|
[32] |
Porpiglia F, Amparore D, Checcucci E, Manfredi M, Stura I, Migliaretti G, et al. Three-dimensional virtual imaging of renal tumours: a new tool to improve the accuracy of nephrometry scores. BJU Int 2019; 124:945e54.
doi: 10.1111/bju.14894
|
[33] |
Campos TJFL, Filho FE, Rocha MFH. Assessment of the complexity of renal tumors by nephrometry (R.E.N.A.L. score) with CT and MRI images versus 3D reconstruction model images. Int Braz J Urol 2021; 47:896e901.
doi: 10.1590/S1677-5538.IBJU.2020.0930
pmid: 33848086
|
[34] |
Huang Q, Gu L, Zhu J, Peng C, Du S, Liu Q, et al. A threedimensional, anatomy-based nephrometry score to guide nephron-sparing surgery for renal sinus tumors. Cancer 2020; 126: 2062e72.
|
[35] |
Bianchi L, Schiavina R, Bortolani B, Cercenelli L, Gaudiano C, Mottaran A, et al. Novel volumetric and morphological parameters derived from three-dimensional virtual modeling to improve comprehension of tumor’s anatomy in patients with renal cancer. Eur Urol Focus 2021; S2405-4569(21)00217-0.https://doi.org/10.1016/j.euf.2021.08.002.
|
[36] |
Shirk JD, Thiel DD, Wallen EM, Linehan JM, White WM, Badani KK, et al. Effect of 3-dimensional virtual reality models for surgical planning of robotic-assisted partial nephrectomy on surgical outcomes. JAMA Netw Open 2019; 2:e1911598. https://doi.org/10.1001/jamanetworkopen.2019.11598.
|
[37] |
Campi R, Sessa F, Rivetti A, Pecoraro A, Barzaghi P, Morselli S, et al. Case report:optimizing pre- and intraoperative planning with hyperaccuracy three-dimensional virtual models for a challenging case of robotic partial nephrectomy for two complex renal masses in a horseshoe kidney. Front Surg 2021; 8:665328. https://doi.org/10.3389/fsurg.2021.665328.
|
[38] |
Schiavina R, Bianchi L, Borghesi M, Chessa F, Cercenelli L, Marcelli E, et al. Three-dimensional digital reconstruction of renal model to guide preoperative planning of robot-assisted partial nephrectomy. Int J Urol 2019; 26:931e2.
doi: 10.1111/iju.14038
pmid: 31234241
|
[39] |
Shirk JD, Kwan L, Saigal C. The use of 3-dimensional,virtual reality models for surgical planning of robotic partial nephrectomy. Urology 2019; 125:92e7.
doi: 10.1016/j.urology.2018.12.026
|
[40] |
Bertolo R, Autorino R, Fiori C, Amparore D, Checcucci E, Mottrie A, et al. Expanding the indications of robotic partial nephrectomy for highly complex renal tumors: urologists’ perception of the impact of hyperaccuracy threedimensional reconstruction. J Laparoendosc Adv Surg Tech 2019; 29:233e9.
doi: 10.1089/lap.2018.0486
|
[41] |
Porpiglia F, Fiori C, Checcucci E, Amparore D, Bertolo R. Hyperaccuracy three-dimensional reconstruction is able to maximize the efficacy of selective clamping during robotassisted partial nephrectomy for complex renal masses. Eur Urol 2018; 74:651e60.
doi: 10.1016/j.eururo.2017.12.027
|
[42] |
Hughes-Hallett A, Vale J, Mayer E. Editorial comment to feasibility and accuracy of computational robot-assisted partial nephrectomy planning by virtual partial nephrectomy analysis. Int J Urol 2015; 22:446. https://doi.org/10.1111/iju.12736.
doi: 10.1111/iju.12736
pmid: 25754603
|
[43] |
Ukimura O, Nakamoto M, Gill IS. Three-dimensional reconstruction of renovascular-tumor anatomy to facilitate zeroischemia partial nephrectomy. Eur Urol 2012; 61:211e7.
doi: 10.1016/j.eururo.2011.07.068
pmid: 21937162
|
[44] |
Melnyk R, Oppenheimer D, Ghazi AE. How specific are patient-specific simulations? Analyzing the accuracy of 3Dprinting and modeling to create patient-specific rehearsals for complex urological procedures. World J Urol 2022; 40:621e6.
doi: 10.1007/s00345-021-03797-0
|
[45] |
Gurung PMS, Melnyk R, Holler T, Oppenhimer D, Witthaus M, Rashid HH, et al. Application of IRIS three-dimensional anatomical models as preoperative surgical planning tools in the management of localized renal masses. J Endourol 2021; 35:383e9.
doi: 10.1089/end.2020.0405
|
[46] |
Mitsui Y, Sadahira T, Araki M, Maruyama Y, Nishimura S, Wada K, et al. The 3-D volumetric measurement including resected specimen for predicting renal function after robotassisted partial nephrectomy. Urology 2019; 125:104e10.
doi: 10.1016/j.urology.2018.12.020
|
[47] |
Fiev D, Proskura A, Khokhlachev S, Taratkin M, Borisov V, Chernenkiy M, et al. A prospective study of novel mathematical analysis of the contrast-enhanced computed tomography vs. renal scintigraphy in renal function evaluation. Eur J Radiol 2020; 130:109169. https://doi.org/10.1016/j.ejrad.2020.109169.
doi: 10.1016/j.ejrad.2020.109169
|
[48] |
Motoyama D, Matsushita Y, Watanabe H, Tamura K, Ito T, Sugiyama T, et al. Significant impact of three-dimensional volumetry of perinephric fat on the console time during robot-assisted partial nephrectomy. BMC Urol 2019; 19:132. https://doi.org/10.1186/s12894-019-0567-0.
doi: 10.1186/s12894-019-0567-0
pmid: 31830961
|
[49] |
Zeng S, Zhou Y, Wang M, Bao H, Na Y, Pan T. Holographic reconstruction technology used for intraoperative real-time navigation in robot-assisted partial nephrectomy in patients with renal tumors: a single center study. Transl Androl Urol 2021; 10:3386e94.
doi: 10.21037/tau-21-473
|
[50] |
Antonelli A, Veccia A, Palumbo C, Peroni A, Mirabella G, Cozzoli A, et al. Holographic reconstructions for preoperative planning before partial nephrectomy: a head-to-head comparison with standard CT scan. Urol Int 2019; 102:212e7.
doi: 10.1159/000495618
|
[51] |
Furukawa J, Miyake H, Tanaka K, Sugimoto M, Fujisawa M. Console-integrated real-time three-dimensional image overlay navigation for robot-assisted partial nephrectomy with selective arterial clamping: early single-centre experience with 17 cases. Int J Med Robot Comput Assist Surg 2014; 10:385e90.
doi: 10.1002/rcs.1574
|
[52] |
Hughes-Hallett A, Pratt P, Mayer E, Martin S, Darzi A, Vale J. Image guidance for alldTilePro display of 3-dimensionally reconstructed images in robotic partial nephrectomy. Urology 2014; 84:237e43.
doi: 10.1016/j.urology.2014.02.051
pmid: 24857271
|
[53] |
Wang F, Zhang C, Guo F, Ji J, Lyu J, Cao Z, et al. Navigation of intelligent/interactive qualitative and quantitative analysis three-dimensional reconstruction technique in laparoscopic or robotic assisted partial nephrectomy for renal hilar tumors. J Endourol 2019; 33:641e6.
doi: 10.1089/end.2018.0570
|
[54] |
Yamada Y, Inoue Y, Kaneko M, Fujihara A, Hongo F, Ukimura O. Virtual reality of three-dimensional surgical field for surgical planning and intraoperative management. Int J Urol 2019; 26:942e3.
doi: 10.1111/iju.14047
|
[55] |
Michiels C, Khene Z-E, Prudhomme T, Boulenger de Hauteclocque A, Cornelis FH, Percot M, et al. 3D-image guided robotic-assisted partial nephrectomy: a multi-institutional propensity score-matched analysis (UroCCR study 51). World J Urol 2021. https://doi.org/10.1007/s00345-021-03645-1.
|
[56] |
Schiavina R, Bianchi L, Chessa F, Barbaresi U, Cercenelli L, Lodi S, et al. Augmented reality to guide selective clamping and tumor dissection during robot-assisted partial nephrectomy: a preliminary experience. Clin Genitourin Cancer 2021; 19:e149e55. https://doi.org/10.1016/j.clgc.2020.09.005.
doi: 10.1016/j.clgc.2020.09.005
|
[57] |
Porpiglia F, Checcucci E, Amparore D, Piramide F, Volpi G, Granato S, et al. Three-dimensional augmented reality robot-assisted partial nephrectomy in case of complex tumours (PADUA _10):a new intraoperative tool overcoming the ultrasound guidance. Eur Urol 2020; 78:229e38.
doi: 10.1016/j.eururo.2019.11.024
|
[58] |
Amparore D, Pecoraro A, Checcucci E, Piramide F, Verri P, De Cillis S, et al. Three-dimensional virtual models’ assistance during minimally invasive partial nephrectomy minimizes the impairment of kidney function. Eur Urol Oncol 2021; 2:104e8.
|
[59] |
Kobayashi S, Cho B, Mutaguchi J, Inokuchi J, Tatsugami K, Hashizume M, et al. Surgical navigation improves renal parenchyma volume preservation in robot-assisted partial nephrectomy: a propensity score matched comparative analysis. J Urol 2020; 204:149e56.
doi: 10.1097/JU.0000000000000709
pmid: 31859597
|
[60] |
Li L, Zeng X, Yang C, Un W, Hu Z. Three-dimensional (3D) reconstruction and navigation in robotic-assisted partial nephrectomy (RAPN) for renal masses in the solitary kidney: a comparative study. Int J Med Robot Comput Assist Surg 2021; 18:e2337. https://doi.org/10.1002/rcs.2337.
|
[61] |
Hughes-Hallett A, Mayer EK, Pratt P, Mottrie A, Darzi A, Vale J. The current and future use of imaging in urological robotic surgery: a survey of the European Association of Robotic Urological Surgeons. Int J Med Robot Comput Assist Surg 2015; 11:8e14.
doi: 10.1002/rcs.1596
|
[62] |
Amparore D, Pecoraro A, Checcucci E, DE Cillis S, Piramide F, Volpi G, et al. 3D imaging technologies in minimally-invasive kidney and prostate cancer surgery: which is the urologists’ perception? Minerva Urol Nephrol 2022; 74:178e85.
|
[63] |
Herrell SD, Galloway RL, Su L-M. Image-guided robotic surgery. Curr Opin Urol 2012; 22:47e54.
doi: 10.1097/MOU.0b013e32834d4ce5
pmid: 22080871
|
[64] |
Kavoussi NL, Pitt B, Ferguson JM, Granna J, Remirez A, Nimmagadda N, et al. Accuracy of touch-based registration during robotic image-guided partial nephrectomy before and after tumor resection in validated phantoms. J Endourol 2021; 35:362e8.
doi: 10.1089/end.2020.0363
|
[65] |
Nimmagadda N, Ferguson JM, Kavoussi NL, Pitt B, Barth EJ, Granna J, et al. Patient-specific, touch-based registration during robotic, image-guided partial nephrectomy. World J Urol 2022; 40:671e7.
doi: 10.1007/s00345-021-03745-y
|
[66] |
Zhang Y, Ouyang W, Wu B, Pokhrel G, Ding B, Xu H, et al. Robot-assisted partial nephrectomy with a standard laparoscopic ultrasound probe in treating endophytic renal tumor. Asian J Surg 2020; 43:423e7.
doi: 10.1016/j.asjsur.2019.07.005
|
[67] |
Hyams ES, Perlmutter M, Stifelman MD. A prospective evaluation of the utility of laparoscopic Doppler technology during minimally invasive partial nephrectomy. Urology 2011; 77:617e20.
doi: 10.1016/j.urology.2010.05.011
|
[68] |
Alenezi AN, Karim O. Role of intra-operative contrastenhanced ultrasound (CEUS) in robotic-assisted nephronsparing surgery. J Robot Surg 2015; 9:1e10.
doi: 10.1007/s11701-015-0496-1
pmid: 25722751
|
[69] |
Kaczmarek BF, Sukumar S, Kumar RK, Desa N, Jost K, Diaz M, et al. Comparison of robotic and laparoscopic ultrasound probes for robotic partial nephrectomy. J Endourol 2013; 27: 1137e40.
doi: 10.1089/end.2012.0528
pmid: 23510382
|
[70] |
Essandoh M, Tang J, Essandoh G, Iyer MH, Kuhn J, Opat K, et al. Transesophageal echocardiography guidance for robotassisted level III inferior vena cava tumor thrombectomy: a novel approach to intraoperative care. J Cardiothorac Vasc Anesth 2018; 32:2623e7.
doi: S1053-0770(18)30349-5
pmid: 29908891
|
[71] |
Veccia A, Antonelli A, Hampton LJ, Greco F, Perdona` S, Lima E, et al. Near-infrared fluorescence imaging with indocyanine green in robot-assisted partial nephrectomy: pooled analysis of comparative studies. Eur Urol Focus 2020; 6:505e12.
|
[72] |
Gadus L, Kocarek J, Chmelik F, Matejkova M, Heracek J. Robotic partial nephrectomy with indocyanine green fluorescence navigation. Contrast Media Mol Imaging 2020; 2020: 1287530. https://doi.org/10.1155/2020/1287530.
|
[73] |
Petrut B, Bujoreanu CE, Porav Hodade D, Hardo VV, Ovidiu Coste B, Maghiar TT, et al. Indocyanine green use in urology. J BUON 2021; 26:266e74.
|
[74] |
Volpe A, Blute ML, Ficarra V, Gill IS, Kutikov A, Porpiglia F, et al. Renal ischemia and function after partial nephrectomy: a collaborative review of the literature. Eur Urol 2015; 68:61e74.
doi: 10.1016/j.eururo.2015.01.025
|
[75] |
Krane LS, Hemal AK. Emerging technologies to improve techniques and outcomes of robotic partial nephrectomy. Urol Clin North Am 2014; 41:511e9.
doi: 10.1016/j.ucl.2014.07.006
|
[76] |
Cacciamani GE, Medina LG, Gill TS, Mendelsohn A, Husain F, Bhardwaj L, et al. Impact of renal hilar control on outcomes of robotic partial nephrectomy: systematic review and cumulative meta-analysis. Eur Urol Focus 2019; 5:619e35.
doi: S2405-4569(18)30013-0
pmid: 29422419
|
[77] |
Simone G, Ferriero M, Papalia R, Costantini M, Guaglianone S, Gallucci M. Zero-ischemia minimally invasive partial nephrectomy. Curr Urol Rep 2013; 14:465e70.
doi: 10.1007/s11934-013-0359-0
|
[78] |
Krane LS, Mufarrij PW, Manny TB, Hemal AK. Comparison of clamping technique in robotic partial nephrectomy: does unclamped partial nephrectomy improve perioperative outcomes and renal function? Can J Urol 2013; 20:6662e7.
|
[79] |
Antonelli A, Cindolo L, Sandri M, Veccia A, Annino F, Bertagna F, et al. Is off-clamp robot-assisted partial nephrectomy beneficial for renal function? Data from the CLOCK trial. BJU Int 2022; 129:217e24.
doi: 10.1111/bju.15503
|
[80] |
Ferriero M, Bove AM, Tuderti G, Anceschi U, Brassetti A, Costantini M, et al. Impact of learning curve on perioperative outcomes of off-clamp minimally invasive partial nephrectomy: propensity score matched comparison of outcomes between training versus expert series. Minerva Urol Nephrol 2021; 73:564e71.
|
[81] |
Mattevi D, Luciani LG, Mantovani W, Cai T, Chiodini S, Vattovani V, et al. Fluorescence-guided selective arterial clamping during RAPN provides better early functional outcomes based on renal scan compared to standard clamping. J Robot Surg 2019; 13:391e6.
doi: 10.1007/s11701-018-0862-x
|
[82] |
Krane LS, Manny TB, Hemal AK. Is near infrared fluorescence imaging using indocyanine green dye useful in robotic partial nephrectomy: a prospective comparative study of 94 patients. Urology 2012; 80:110e8.
doi: 10.1016/j.urology.2012.01.076
|
[83] |
Diana P, Buffi NM, Lughezzani G, Dell’Oglio P, Mazzone E, Porter J, et al. The role of intraoperative indocyanine green in robot-assisted partial nephrectomy: results from a large, multi-institutional series. Eur Urol 2020; 78:743e9.
doi: 10.1016/j.eururo.2020.05.040
|
[84] |
Lanchon C, Arnoux V, Fiard G, Descotes J-L, Rambeaud J-J, Lefrancq J-B, et al. Super-selective robot-assisted partial nephrectomy using near-infrared fluorescence versus earlyunclamping of the renal artery: results of a prospective matched-pair analysis. Int Braz J Urol 2018; 44:53e62.
doi: 10.1590/s1677-5538.ibju.2017.0311
|
[85] |
Borofsky MS, Gill IS, Hemal AK, Marien TP, Jayaratna I, Krane LS, et al. Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zero-ischaemia robotic partial nephrectomy. BJU Int 2013; 111:604e10.
doi: 10.1111/j.1464-410X.2012.11490.x
pmid: 23253629
|
[86] |
Harke N, Schoen G, Schiefelbein F, Heinrich E. Selective clamping under the usage of near-infrared fluorescence imaging with indocyanine green in robot-assisted partial nephrectomy: a single-surgeon matched-pair study. World J Urol 2014; 32:1259e65.
doi: 10.1007/s00345-013-1202-4
pmid: 24193104
|
[87] |
Bjurlin MA, Gan M, McClintock TR, Volpe A, Borofsky MS, Mottrie A, et al. Near-infrared fluorescence imaging: emerging applications in robotic upper urinary tract surgery. Eur Urol 2014; 65:793e801.
doi: 10.1016/j.eururo.2013.09.023
pmid: 24099660
|
[88] |
McClintock TR, Bjurlin MA, Wysock JS, Borofsky MS, Marien TP, Okoro C, et al. Can selective arterial clamping with fluorescence imaging preserve kidney function during robotic partial nephrectomy? Urology 2014; 84:327e34.
doi: 10.1016/j.urology.2014.02.044
pmid: 24909960
|
[89] |
Basile G, Breda A, Gomez Rivas J, Cacciamani G, Okhunov Z, Dourado A, et al. Comparison between near-infrared fluorescence imaging with indocyanine green and infrared imaging: on-bench trial for kidney perfusion analysis. A project of the ESUT-YAUWP group. Minerva Urol Nefrol 2019; 71: 280e5.
|
[90] |
Sentell KT, Ferroni MC, Abaza R. Near-infrared fluorescence imaging for intraoperative margin assessment during robotassisted partial nephrectomy. BJU Int 2020; 126:259e64.
doi: 10.1111/bju.15089
|
[91] |
Angell JE, Khemees TA, Abaza R. Optimization of near infrared fluorescence tumor localization during robotic partial nephrectomy. J Urol 2013; 190:1668e73.
doi: 10.1016/j.juro.2013.04.072
|
[92] |
Bjurlin MA, McClintock TR, Stifelman MD. Near-infrared fluorescence imaging with intraoperative administration of indocyanine green for robotic partial nephrectomy. Curr Urol Rep 2015; 16:20. https://doi.org/10.1007/s11934-015-0495-9.
doi: 10.1007/s11934-015-0495-9
pmid: 25698588
|
[93] |
Manny TB, Krane LS, Hemal AK. Indocyanine green cannot predict malignancy in partial nephrectomy: histopathologic correlation with fluorescence pattern in 100 patients. J Endourol 2013; 27:918e21.
doi: 10.1089/end.2012.0756
pmid: 23442199
|
[94] |
Simone G, Tuderti G, Anceschi U, Ferriero M, Costantini M, Minisola F, et al. “Ride the green light”: indocyanine greenmarked off-clamp robotic partial nephrectomy for totally endophytic renal masses. Eur Urol 2019; 75:1008e14.
doi: 10.1016/j.eururo.2018.09.015
|
[95] |
Farinha R, Rosiello G, Paludo ADO, Mazzone E, Puliatti S, Amato M, et al. Selective suturing or sutureless technique in robot-assisted partial nephrectomy: results from a propensityscore matched analysis. Eur Urol Focus 2022; 8:506e13.
|
[96] |
Hekman MCH, Rijpkema M, Langenhuijsen JF, Boerman OC, Oosterwijk E, Mulders PFA. Intraoperative imaging techniques to support complete tumor resection in partial nephrectomy. Eur Urol Focus 2018; 4:960e8.
|
[97] |
Shum CF, Bahler CD, Low PS, Ratliff TL, Kheyfets SV, Natarajan JP, et al. Novel use of folate-targeted intraoperative fluorescence, OTL38, in robot-assisted laparoscopic partial nephrectomy:report of the first three cases. J Endourol Case Rep 2016; 2:189e97.
|
[98] |
Sulek JE, Steward JE, Bahler CD, Jacobsen MH, Sundaram A, Shum CF, et al. Folate-targeted intraoperative fluorescence, OTL38, in robotic-assisted laparoscopic partial nephrectomy. Scand J Urol 2021; 55:331e6.
|
[99] |
Hekman MCH, Boerman OC, de Weijert M, Bos DL, Oosterwijk E, Langenhuijsen HF, et al. Targeted dualmodality imaging in renal cell carcinoma: an ex vivo kidney perfusion study. Clin Cancer Res 2016; 22:4634e42.
doi: 10.1158/1078-0432.CCR-15-2937
|
[100] |
Brassetti A, Anceschi U, Bertolo R, Ferriero M, Tuderti G, Capitanio U, et al. Surgical quality, cancer control and functional preservation: introducing a novel trifecta for robot-assisted partial nephrectomy. Minerva Urol Nefrol 2020; 72:82e90.
doi: 10.23736/S0393-2249.19.03570-7
pmid: 31833720
|
[101] |
Bianchi L, Schiavina R, Borghesi M, Chessa F, Casablanca C, Angiolini A, et al. Which patients with clinical localized renal mass would achieve the trifecta after partial nephrectomy? The impact of surgical technique. Minerva Urol Nefrol 2020; 72:339e49.
|
[102] |
Sighinolfi MC, Eissa A, Spandri V, Puliatti S, Micali S, Reggiani Bonetti L, et al. Positive surgical margin during radical prostatectomy: overview of sampling methods for frozen sections and techniques for the secondary resection of the neurovascular bundles. BJU Int 2020; 125:656e63.
doi: 10.1111/bju.15024
pmid: 32012426
|
[103] |
Phung MC, Rouse AR, Pangilinan J, Bell RC, Bracamonte ER, Mashi S, et al. Investigation of confocal microscopy for differentiation of renal cell carcinoma versus benign tissue. Can an optical biopsy be performed? Asian J Urol 2020; 7: 363e8.
|
[104] |
Villarreal JZ, Pérez-Anker J, Puig S, Pellacani G, Solé M, Malvehy J, et al. Ex vivo confocal microscopy performs realtime assessment of renal biopsy in non-neoplastic diseases. J Nephrol 2021; 34:689e97.
doi: 10.1007/s40620-020-00844-8
|
[105] |
Su L-M, Kuo J, Allan RW, Liao JC, Ritari KL, Tomeny PE, et al. Fiber-optic confocal laser endomicroscopy of small renal masses: toward real-time optical diagnostic biopsy. J Urol 2016; 195:486e92.
doi: 10.1016/j.juro.2015.07.115
pmid: 26321408
|
[106] |
Puliatti S, Bertoni L, Pirola GM, Azzoni P, Bevilacqua L, Eissa A, et al. Ex vivo fluorescence confocal microscopy: the first application for real-time pathological examination of prostatic tissue. BJU Int 2019; 124:469e76.
doi: 10.1111/bju.14754
pmid: 30908852
|
[107] |
Bertoni L, Puliatti S, Reggiani Bonetti L, Maiorana A, Eissa A, Azzoni P, et al. Ex vivo fluorescence confocal microscopy: prostatic and periprostatic tissues atlas and evaluation of the learning curve. Virchows Arch 2020; 476:511e20.
doi: 10.1007/s00428-019-02738-y
|
[108] |
Shu L-Q, Sun Y-K, Tan L-H, Shu Q, Chang AC. Application of artificial intelligence in pediatrics: past, present and future. World J Pediatr 2019; 15:105e8.
doi: 10.1007/s12519-019-00255-1
|
[109] |
Moglia A, Georgiou K, Georgiou E, Satava RM, Cuschieri A. A systematic review on artificial intelligence in robot-assisted surgery. Int J Surg 2021; 95:106151. https://doi.org/10.1016/j.ijsu.2021.106151.
|
[110] |
Bhandari M, Nallabasannagari AR, Reddiboina M, Porter JR, Jeong W, Mottrie A, et al. Predicting intra-operative and postoperative consequential events using machine-learning techniques in patients undergoing robot-assisted partial nephrectomy:a Vattikuti Collective Quality Initiative database study. BJU Int 2020; 126:350e8.
|
[111] |
NakawalaH, BianchiR, PescatoriLE, DeCobelliO, FerrignoG, De Momi E. “Deep-Onto” network for surgicalworkflowand context recognition. Int J Comput Assist Radiol Surg 2019; 14:685e96.
doi: 10.1007/s11548-018-1882-8
|
[112] |
Amir-Khalili A, Hamarneh G, Peyrat JM, Abinahed J, Al-Alao O, Al-Ansari A, et al. Automatic segmentation of occluded vasculature via pulsatile motion analysis in endoscopic robot-assisted partial nephrectomy video. Med Image Anal 2015; 25:103e10.
doi: 10.1016/j.media.2015.04.010
pmid: 25977157
|
[1] |
Karl-Friedrich Kowalewski,Luisa Egen,Chanel E. Fischetti,Stefano Puliatti,Gomez Rivas Juan,Mark Taratkin,Rivero Belenchon Ines,Marie Angela Sidoti Abate,Julia Mühlbauer,Frederik Wessels,Enrico Checcucci,Giovanni Cacciamani,on behalf of the Young Academic Urologists (YAU)-Urotechnology-Group . Artificial intelligence for renal cancer: From imaging to histology and beyond[J]. Asian Journal of Urology, 2022, 9(3): 243-252. |
[2] |
Daniele Amparore,Angela Pecoraro,Federico Piramide,Paolo Verri,Enrico Checcucci,Sabrina De Cillis,Alberto Piana,Mariano Burgio,Michele Di Dio,Matteo Manfredi,Cristian Fiori,Francesco Porpiglia. Three-dimensional imaging reconstruction of the kidney's anatomy for a tailored minimally invasive partial nephrectomy: A pilot study[J]. Asian Journal of Urology, 2022, 9(3): 263-271. |
[3] |
Luke P. O’Connor,Shayann Ramedani,Michael Daneshvar,Arvin K. George,Andre Luis Abreu,Giovanni E. Cacciamani,Amir H. Lebastchi. Future perspective of focal therapy for localized prostate cancer[J]. Asian Journal of Urology, 2021, 8(4): 354-361. |
[4] |
Shuchi Gulati,Nicholas J. Vogelzang. Biomarkers in renal cell carcinoma: Are we there yet?[J]. Asian Journal of Urology, 2021, 8(4): 362-375. |
[5] |
Wattanachai Ratanapornsompong,Suthep Pacharatakul,Premsant Sangkum,Chareon Leenanupan,Wisoot Kongcharoensombat. Effect of puboprostatic ligament preservation during robotic-assisted laparoscopic radical prostatectomy on early continence: Randomized controlled trial[J]. Asian Journal of Urology, 2021, 8(3): 260-268. |
[6] |
Santosh Kumar,Abhishek Chandna,Vignesh Manoharan,Kalpesh M. Parmar,Subhajit Mandal. Conquering new battlegrounds: Successful management of isolated giant retrovesical hydatid cyst with robotic assistance[J]. Asian Journal of Urology, 2021, 8(3): 327-331. |
[7] |
Fubo Wang,Chao Zhang,Fei Guo,Xia Sheng,Jin Ji,Yalong Xu,Zhi Cao,Ji Lyu,Xiaoying Lu,Bo Yang. The application of virtual reality training for anastomosis during robot-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(2): 204-208. |
[8] |
Marcio Covas Moschovas,Frederico Timóteo,Leonardo Lins,Oséas de Castro Neves,Kulthe Ramesh Seetharam Bhat,Vipul R. Patel. Robotic surgery techniques to approach benign prostatic hyperplasia disease: A comprehensive literature review and the state of art[J]. Asian Journal of Urology, 2021, 8(1): 81-88. |
[9] |
Kulthe Ramesh Seetharam Bhat,Marcio Covas Moschovas,Fikret Fatih Onol,Travis Rogers,Shannon Roof,Vipul R. Patel,Oscar Schatloff. Robotic renal and adrenal oncologic surgery: A contemporary review[J]. Asian Journal of Urology, 2021, 8(1): 89-99. |
[10] |
Marcio Covas Moschovas,Kulthe Ramesh Seetharam Bhat,Fikret Fatih Onol,Travis Rogers,Gabriel Ogaya-Pinies,Shannon Roof,Vipul R. Patel. Single-port technique evolution and current practice in urologic procedures[J]. Asian Journal of Urology, 2021, 8(1): 100-104. |
[11] |
Kulthe Ramesh Seetharam Bhat,Srinivas Samavedi,Marcio Covas Moschovas,Fikret Fatih Onol,Shannon Roof,Travis Rogers,Vipul R. Patel,Ananthakrishnan Sivaraman. Magnetic resonance imaging-guided prostate biopsy—A review of literature[J]. Asian Journal of Urology, 2021, 8(1): 105-116. |
[12] |
Yucong Zhang,Gongwei Long,Haojie Shang,Beichen Ding,Guoliang Sun,Wei Ouyang,Man Liu,Yuan Chen,Heng Li,Hua Xu,Zhangqun Ye. Comparison of the oncological, perioperative and functional outcomes of partial nephrectomy versus radical nephrectomy for clinical T1b renal cell carcinoma: A systematic review and meta-analysis of retrospective studies[J]. Asian Journal of Urology, 2021, 8(1): 117-125. |
[13] |
Zepeng Jia,Yifan Chang,Yan Wang,Jing Li,Min Qu,Feng Zhu,Huan Chen,Bijun Lian,Meimian Hua,Yinghao Sun,Xu Gao. Sustainable functional urethral reconstruction: Maximizing early continence recovery in robotic-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(1): 126-133. |
[14] |
Marcio Covas Moschovas,Kulthe Ramesh Seetharam Bhat,Cathy Jenson,Vipul R. Patel,Gabriel Ogaya-Pinies. Robtic-assisted radical cystectomy: Literature review[J]. Asian Journal of Urology, 2021, 8(1): 14-19. |
[15] |
Gilberto José Rodrigues,Giuliano Betoni Guglielmetti,Marcelo Orvieto,Kulthe Ramesh Seetharam Bhat,Vipul R. Patel,Rafael Ferreira Coelho. Robot-assisted endoscopic inguinal lymphadenectomy: A review of current outcomes[J]. Asian Journal of Urology, 2021, 8(1): 20-26. |
|
|
|
|