|
|
Impact of pre- and peri-operative risk factors on length of stay and hospital readmission following minimally-invasive partial nephrectomy |
Vanessa A. Lukasa,Rahul Duttab,Ashok K. Hemalb,Matvey Tsivianb,Timothy E. Cravenb,Nicholas A. Deebelb,David D. Thielc,Ram Anil Pathakc,*( )
|
aBrigham and Women's Hospital, Division of Urology, Department of Surgery, 75 Francis Street, Boston, MA, USA bAtrium Health Wake Forest Baptist Medical Center, Department of Urology, 1 Medical Center Blvd, Winston-Salem, NC, USA cMayo Clinic Florida, Department of Urology, 4500 San Pablo Road, Jacksonville, FL, USA |
|
|
Abstract Objective: We conducted an analysis of the American College of Surgeons National Surgical Quality Improvement Program database for minimally-invasive partial nephrectomy cases reported with the goal to identify pre- and peri-operative variables associated with length of stay (LOS) greater than 3 days and readmission within 30 days. Methods: Records from 2008 to 2018 for “laparoscopy, surgical; partial nephrectomy” for prolonged LOS and readmission cohorts were compiled. Univariate analysis with Chi-square, t-tests, and multivariable logistic regression analysis with odds ratios (ORs), p-values, and 95% confidence intervals assessed statistical associations. Results: Totally, 20 306 records for LOS greater than 3 days and 15 854 for readmission within 30 days were available. Univariate and multivariable analysis exhibited similar results. For LOS greater than 3 days, undergoing non-elective surgery (OR=5.247), transfusion of greater than four units within 72 h prior to surgery (OR=5.072), pre-operative renal failure or dialysis (OR=2.941), and poor pre-operative functional status (OR=2.540) exhibited the strongest statistically significant associations. For hospital readmission within 30 days, loss in body weight greater than 10% in 6 months prior to surgery (OR=2.227) and bleeding disorders (OR=2.081) exhibited strongest statistically significant associations. Conclusion: Multiple pre- and peri-operative risk factors are independently associated with prolonged LOS and hospital readmission within 30 days of surgery using the American College of Surgeons National Surgical Quality Improvement Program data. Recognizing the risks factors that can potentially be improved prior to minimally-invasive partial nephrectomy is crucial to informing patient selection, optimization strategies, and patient education.
|
Received: 20 October 2021
Available online: 20 January 2024
|
Corresponding Authors:
*E-mail address: Pathak.Ram@mayo.edu (R.A. Pathak).
|
|
|
Factor | Overall (n=20 306) | Full dataset for LOS (n=20 306) | Full dataset for readmission (n=15 854) | >3 days (n=3506) | ≤3 days (n=16 800) | p-Value | Readmitted <30 daysa (n=958) | Not readmitteda (n=14 896) | p-Value | Ageb, year | 59±12 | 61±13 | 59±12 | <0.0001 | 61±13 | 59±12 | <0.0001 | BMIb, kg/m2 | 30.9±6.7 | 31.2±7.1 | 30.8±6.6 | 0.006 | 31.3±6.9 | 30.8±6.7 | 0.031 | Surgery yearc | | | | <0.0001 | | | <0.0001 | 2008-2010 | 514 (3) | 146 (28) | 368 (72) | | NA | NA | | 2011-2013 | 3915 (19) | 783 (20) | 3132 (80) | 175 (5) | 3650 (95) | | 2014-2015 | 4800 (24) | 890 (19) | 3910 (81) | 245 (5) | 4516 (95) | 2016-2018 | 11 077 (55) | 1687 (15) | 9390 (85) | 538 (7) | 6730 (93) |
|
Descriptive statistics of pre-operative factors overall according to LOS >3 days versus LOS ≤3 days, and by readmission versus no readmission within 30 days.
|
Dichotomous factor | Overalla (n=20 306) | Full dataset for LOS >3 days (n=20 306) | Full dataset for readmission (n=15 854) | Factor+a | Factor?a | p-Value | Readmitted (factor+)a | Readmitted (factor?)a | p-Value | BMI ≥30 kg/m2 | 10 112 (49) | 1778/10 112 (18) | 1728/10 194 (17) | 0.23 | 514/7836 (7) | 444/8018 (6) | 0.007 | Hispanic ethnicity (vs. non-Hispanic) | 1302 (6) | 189/1302 (15) | 3317/19 004 (17) | 0.007 | 70/985 (7) | 888/14 869 (6) | 0.15 | Race | Caucasian (vs. others) | 15 066 (74) | 2377/15 066 (16) | 1129/5240 (22) | <0.0001 | 700/11 851 (6) | 258/4003 (6) | 0.22 | African-American (vs. others) | 1964 (10) | 368/1964 (19) | 3138/18 342 (17) | 0.070 | 103/1475 (7) | 855/14 379 (6) | 0.11 | Asian (vs. others) | 610 (3) | 91/610 (15) | 3415/19 696 (17) | 0.119 | 21/471 (4) | 937/15 383 (6) | 0.14 | Other or unknown (vs. others) | 2666 (13) | 670/2666 (25) | 2836/17 640 (16) | <0.0001 | 134/2057 (7) | 824/13 797 (6) | 0.34 | Diabetes mellitus (on medications) | 3992 (20) | 852/3992 (21) | 2654/16 314 (16) | <0.0001 | 261/3097 (8) | 697/12 757 (5) | <0.0001 | Current smoker within 1 year | 3764 (19) | 653/3764 (17) | 2853/16 542 (17) | 0.88 | 186/3010 (6) | 772/12 844 (6) | 0.73 | Dyspnea | 1063 (5) | 279/1063 (26) | 2853/19 243 (15) | <0.0001 | 79/870 (9) | 879/14 984 (6) | 0.0001 | History of severe COPD | 698 (3) | 202/698 (29) | 3304/19 608 (17) | <0.0001 | 56/561 (10) | 902/15 293 (6) | <0.0001 | History of CHF within 30 days | 66 (<1) | 22/66 (33) | 3484/20 240 (17) | 0.0005 | 8/53 (15) | 950/15 801 (6) | 0.014b | Hypertension requiring medication | 11 784 (58) | 2298/11 784 (20) | 1208/8522 (14) | <0.0001 | 605/9193 (7) | 353/6661 (5) | 0.0008 | Steroid use for chronic condition | 520 (3) | 109/520 (21) | 3397/19 786 (17) | 0.024 | 40/413 (10) | 918/15 441 (6) | 0.002 | Bleeding disorder | 363 (2) | 112/363 (31) | 3394/19 943 (17) | <0.0001 | 42/304 (14) | 916/15 550 (6) | <0.0001 | Open wound or wound infection | 66 (<1) | 17/66 (26) | 3489/20 240 (17) | 0.068 | 5/51 (10) | 953/15 803 (6) | 0.24b | More than 10% loss of body weight last 6 months | 146 (1) | 44/146 (30) | 3462/20 160 (17) | <0.0001 | 16/119 (13) | 942/15 735 (6) | 0.0007 | Emergency case | 32 (<1) | 13/32 (41) | 3493/20 274 (17) | 0.0005 | 5/28 (18) | 953/15 826 (6) | 0.025b | Transfusion of greater than four units within 72 h prior to surgery | 20 (<1) | 14/20 (70) | 3492/20 286 (17) | <0.0001c | 1/17 (6) | 957/15 837 (6) | 1.00b | Non-elective case of surgery | 306 (2) | 167/306 (55) | 3339/20 000 (17) | <0.0001 | 28/264 (11) | 930/15 590 (6) | 0.002 | Renal failure or dialysis | 70 (<1) | 34/70 (49) | 3472/20 236 (17) | <0.0001 | 6/42 (14) | 952/15 812 (6) | 0.039b | Systemic sepsis | 60 (<1) | 19/60 (32) | 3487/20 246 (17) | 0.003 | 3/44 (7) | 955/15 810 (6) | 0.75b | Partially/totally dependent functional status | 116 (1) | 46/116 (40) | 3460/20 190 (17) | <0.0001 | 11/86 (13) | 947/15 768 (6) | 0.009 | ASA classification: severe disturbancec | 10 525 (52) | 2029/10 525 (19) | 1476/9779 (15) | <0.0001 | 577/8163 (7) | 381/7690 (5) | <0.0001 | Contaminated wound | 109 (1) | 28/109 (26) | 3478/20 197 (17) | 0.020 | 8/82 (10) | 950/15 772 (6) | 0.16b |
|
Descriptive statistics of ACS-NSQIP specific pre-operative characteristics for patients categorized by LOS >3 days versus LOS ≤3 days, and by readmission versus no readmission within 30 days.
|
Factor | LOS >3 days | Readmission <30 days | OR | 95% CI | p-Value | OR | 95% CI | p-Value | Calendar year of surgical procedure | | | <0.0001 | | | <0.0001 | 2008-2010 vs. 2016-2018 | 2.338 | 1.908-2.866 | | N/A | | | 2011-2013 vs. 2016-2018 | 1.427 | 1.295-1.572 | 0.601 | 0.504-0.718 | 2014-2015 vs. 2016-2018 | 1.277 | 1.165-1.400 | 0.678 | 0.579-0.793 | Age of patient | 1.184 | 1.134-1.236 | <0.0001 | 1.099 | 1.017-1.188 | 0.017 | BMI≥30 kg/m2 | 1.029 | 0.950-1.114 | 0.490 | 1.091 | 0.947-1.257 | 0.230 | Hispanic ethnicity | 0.763 | 0.646-0.901 | 0.0014 | 1.186 | 0.916-1.537 | 0.200 | Patient race | | | <0.0001 | | | 0.250 | African-American vs. Caucasian | 1.179 | 1.039-1.337 | | 1.143 | 0.918-1.423 | | Asian vs. Caucasian | 1.036 | 0.821-1.308 | 0.802 | 0.511-1.257 | Other or unknown race vs. Caucasian | 2.021 | 1.825-2.239 | 1.142 | 0.939-1.388 | Diabetes mellitus with oral agents or insulin | 1.204 | 1.096-1.323 | 0.0001 | 1.373 | 1.170-1.611 | 0.0001 | Current smoker within 1 year | 1.014 | 0.917-1.121 | 0.780 | 1.040 | 0.874-1.238 | 0.660 | Dyspnea | 1.289 | 1.103-1.507 | 0.0014 | 1.285 | 0.992-1.666 | 0.058 | History of severe COPD | 1.571 | 1.306-1.890 | <0.0001 | 1.431 | 1.053-1.945 | 0.022 | Congestive heart failure within 30 days | 1.544 | 0.890-2.676 | 0.120 | 2.004 | 0.924-4.347 | 0.079 | Hypertension requiring medication | 1.191 | 1.090-1.301 | 0.0001 | 0.971 | 0.830-1.136 | 0.710 | Steroid use for chronic condition | 1.098 | 0.878-1.375 | 0.410 | 1.426 | 1.014-2.006 | 0.042 | Bleeding disorder | 1.695 | 1.336-2.150 | <0.0001 | 2.081 | 1.475-2.935 | <0.0001 | Open wound or wound infection | 1.210 | 0.673-2.177 | 0.520 | 1.386 | 0.542-3.546 | 0.500 | More than 10% loss body weight in last 6 months | 1.617 | 1.108-2.360 | 0.013 | 2.227 | 1.290-3.845 | 0.004 | Emergency case | 1.149 | 0.495-2.667 | 0.750 | 2.823 | 0.986-8.086 | 0.053 | Transfusion >4 units PRBCs within 72 h | 5.072 | 1.760-14.617 | 0.003 | 0.314 | 0.037-2.687 | 0.290 | Non-elective surgery | 5.247 | 4.123-6.677 | <0.0001 | 1.615 | 1.060-2.461 | 0.026 | Pre-operative renal failure or dialysis | 2.941 | 1.763-4.906 | <0.0001 | 1.485 | 0.590-3.736 | 0.400 | Systemic sepsis (SIRS or sepsis) | 1.415 | 0.766-2.615 | 0.270 | 0.753 | 0.224-2.531 | 0.650 | Functional status dependent vs. independent or unknown | 2.540 | 1.713-3.767 | <0.0001 | 1.801 | 0.928-3.494 | 0.082 | ASA class (1 or 2 vs. greater than 3) | 1.145 | 1.055-1.242 | 0.0011 | 1.218 | 1.053-1.408 | 0.008 | Contaminated or dirty wound | 1.531 | 0.974-2.406 | 0.065 | 1.647 | 0.779-3.484 | 0.190 |
|
Results of multivariable logistic regression model for LOS more than 3 days and readmission within 30 days after surgery including pre-operative factors only as predictors (n=20 306, 3505 [17.3%] with LOS>3 days, 958 [4.7%] readmitted <30 days).
|
[1] |
Campbell SC, Clark PE, Chang SS, Karam JA, Souter L, Uzzo RG. Renal mass and localized renal cancer: evaluation, management, and follow-up: AUA guideline: Part I. J Urol 2021; 206:199-208.
doi: 10.1097/JU.0000000000001911
|
[2] |
Leow JJ, Heah NH, Chang SL, Chong YL, Png KS. Outcomes of robotic versus laparoscopic partial nephrectomy: an updated meta-analysis of 4919 patients. J Urol 2016; 196:1371-7.
doi: 10.1016/j.juro.2016.06.011
|
[3] |
Minervini A, Vittori G, Antonelli A, Celia A, Crivellaro S, Dente D, et al. Open versus robotic-assisted partial nephrectomy: a multicenter comparison study of perioperative results and complications. World J Urol 2014; 32:287-93.
doi: 10.1007/s00345-013-1136-x
pmid: 23913095
|
[4] |
Bezinque A, Lane BR. Comparison of 1800 robotic and open partial nephrectomies for renal tumors. Ann Surg Oncol 2016; 23:4137-8.
pmid: 27401450
|
[5] |
Patel HD, Mullins JK, Pierorazio PM, Jayram G, Cohen JE, Matlaga BR, et al. Trends in renal surgery: robotic technology is associated with increased use of partial nephrectomy. J Urol 2013; 189:1229-35.
doi: 10.1016/j.juro.2012.10.024
pmid: 23085300
|
[6] |
Wallis CJ, Garbens A, Chopra S, Gill IS, Satkunasivam R. Robotic partial nephrectomy: expanding utilization, advancing innovation. J Endourol 2017; 31:348-54.
doi: 10.1089/end.2016.0639
pmid: 28117608
|
[7] |
Ghani KR, Sukumar S, Sammon JD, Rogers CG, Trinh QD, Menon M. Practice patterns and outcomes of open and minimally invasive partial nephrectomy since the introduction of robotic partial nephrectomy: results from the nationwide inpatient sample. J Urol 2014; 191:907-12.
doi: 10.1016/j.juro.2013.10.099
pmid: 24184365
|
[8] |
Kelly M, Sharp L, Dwane F, Kelleher T, Comber H. Factors predicting hospital length-of-stay and readmission after colorectal resection: a population-based study of elective and emergency admissions. BMC Health Serv Res 2012; 12:77. https://doi.org/10.1186/1472-6963-13-244.
doi: 10.1186/1472-6963-12-77
pmid: 22448728
|
[9] |
Guinier D, Mantion GA, Alves A, Kwiatkowski F, Slim K, Panis Y, et al. Risk factors of unplanned readmission after colorectal surgery: a prospective, multicenter study. Dis Colon Rectum 2007; 50:1316-23.
pmid: 17665252
|
[10] |
Brandao LF, Zargar H, Laydner H, Akca O, Autorino R, Ko O, et al. 30-day hospital readmission after robotic partial nephrectomy-are we prepared for Medicare readmission reduction program? J Urol 2014; 192:677-81.
doi: 10.1016/j.juro.2014.02.009
pmid: 24530985
|
[11] |
Fink AS, Campbell DA Jr, Mentzer RM Jr, Henderson WG, Daley J, Bannister J, et al. The National Surgical Quality Improvement Program in non-veterans administration hospitals: initial demonstration of feasibility. Ann Surg 2002; 236: 344-54.
doi: 10.1097/00000658-200209000-00011
pmid: 12192321
|
[12] |
Hutter MM, Rowell KS, Devaney LA, Sokal SM, Warshaw AL, Abbott WM, et al. Identification of surgical complications and deaths: an assessment of the traditional surgical morbidity and mortality conference compared with the American College of Surgeons-National Surgical Quality Improvement Program. J Am Coll Surg 2006; 203:618-24.
doi: 10.1016/j.jamcollsurg.2006.07.010
|
[13] |
Davenport DL, Holsapple CW, Conigliaro J. Assessing surgical quality using administrative and clinical data sets: a direct comparison of the University HealthSystem Consortium Clinical database and the National Surgical Quality Improvement Program data set. Am J Med Qual 2009; 24:395-402.
|
[14] |
Collins TC, Daley J, Henderson WH, Khuri SF. Risk factors for prolonged length of stay after major elective surgery. Ann Surg 1999; 230:251-9.
doi: 10.1097/00000658-199908000-00016
pmid: 10450740
|
[15] |
Connor J, Doppalapudi SK, Wajswol E, Ragam R, Press B, Luu T, et al. Postoperative complications after robotic partial nephrectomy. J Endourol 2020; 34:42-7.
|
[16] |
Bajalia EM, Parikh KA, Haehn DA, Kahn AE, Ball CT, Thiel DD. Assessment of advanced perioperative outcomes to identify the true learning curve of robotic-assisted partial nephrectomy. Urology 2020; 144:136-41.
doi: S0090-4295(20)30786-X
pmid: 32619599
|
[17] |
Mrdutt MM, Papaconstantinou HT, Robinson BD, Bird ET, Isbell CL. Preoperative frailty and surgical outcomes across diverse surgical subspecialties in a large health care system. J Am Coll Surg 2019; 228:482-90.
doi: 10.1016/j.jamcollsurg.2018.12.036
|
[18] |
Li XS, Yao L, Gong K, Yu W, He Q, Zhou LQ, et al. Growth pattern of renal cell carcinoma (RCC) in patients with delayed surgical intervention. J Cancer Res Clin Oncol 2012; 138: 269-74.
doi: 10.1007/s00432-011-1083-0
|
[19] |
Liu JJ, Leppert JT, Maxwell BG, Panousis P, Chung BI. Trends and perioperative outcomes for laparoscopic and robotic nephrectomy using the National Surgical Quality Improvement Program (NSQIP) database. Urol Oncol 2014; 32:473-9.
|
[20] |
Harris AM, James A, Dugan A, Bylund J. Increased operative duration in minimally invasive partial nephrectomy is associated with significantly increased risk of 30-day morbidity. J Endourol 2019; 33:549-56.
doi: 10.1089/end.2019.0233
pmid: 31044616
|
[21] |
Cacciamani GE, Medina LG, Gill T, Abreu A, Sotelo R, Artibani W, et al. Impact of surgical factors on robotic partial nephrectomy outcomes: comprehensive systematic review and meta-analysis. J Urol 2018; 200:258-74.
doi: S0022-5347(18)42791-7
pmid: 29580709
|
[22] |
Shumate AM, Roth G, Ball CT, Custer K, Thiel DD. Factors associated with prolonged length of stay following roboticassisted partial nephrectomy. Can J Urol 2019; 26:9726-32.
pmid: 31012837
|
[23] |
Bilimoria KY, Liu Y, Paruch JL, Zhou L, Kmiecik TE, Ko CY, et al. Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons. J Am Coll Surg 2013; 217:833-42.e1-3. https://doi.org/10.1016/j.jamcollsurg.2013.07.385.
doi: 10.1016/j.jamcollsurg.2013.07.385
|
[24] |
Winoker JS, Paulucci DJ, Anastos H, Waingankar N, Abaza R, Eun DD, et al. Predicting complications following robotassisted partial nephrectomy with the ACS NSQIP® universal surgical risk calculator. J Urol 2017; 198:803-9.
doi: S0022-5347(17)45452-8
pmid: 28400189
|
[25] |
Bazzi WM, Sjoberg DD, Grasso AA, Bernstein M, Parra R, Coleman JA. Predicting length of stay after robotic partial nephrectomy. Int Urol Nephrol 2015; 47:1321-5.
doi: 10.1007/s11255-015-1044-7
pmid: 26156732
|
[26] |
Sentell KT, Badani KK, Paulucci DJ, Hemal AK, Porter J, Eun DD, et al. A single overnight stay after robotic partial nephrectomy does not increase complications. J Endourol 2019; 33:1003-8.
doi: 10.1089/end.2019.0218
pmid: 31422698
|
[27] |
Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol 1994; 47: 1245-51.
doi: 10.1016/0895-4356(94)90129-5
pmid: 7722560
|
[28] |
Haehn DA, Kahn AE, Parikh KA, Bajalia EM, Ball CT, Thiel DD. Perioperative outcomes of laparoscopic radical nephrectomy for renal mass in patients on dialysis or with renal transplant in place compared to normal controls. J Laparoendosc Adv Surg Tech A 2021; 31:189-93.
doi: 10.1089/lap.2020.0383
|
[29] |
Dagenais J, Bertolo R, Garisto J, Maurice MJ, Mouracade P, Kara O, et al. Variability in partial nephrectomy outcomes: does your surgeon matter? Eur Urol 2019; 75:628-34.
doi: S0302-2838(18)30841-8
pmid: 30396636
|
[30] |
Xia L, Pulido JE, Chelluri RR, Strother MC, Taylor BL, Raman JD, et al. Hospital volume and outcomes of robotassisted partial nephrectomy. BJU Int 2018; 121:900-7.
doi: 10.1111/bju.2018.121.issue-6
|
[31] |
Banegas MP, Harlan LC, Mann B, Yabroff KR. Toward greater adoption of minimally invasive and nephron-sparing surgical techniques for renal cell cancer in the United States. Urol Oncol 2016;34. 433:e9-17. https://doi.org/10.1016/j.urolonc.2016.05.021.
|
No related articles found! |
|
|
|
|