|
|
The application of indocyanine green in guiding prostate cancer treatment |
Donghua Xie,Di Gu,Ming Lei,Cong Cai,Wen Zhong,Defeng Qi,Wenqi Wu,Guohua Zeng,Yongda Liu*( )
|
Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China |
|
|
Abstract Objective: Indocyanine green (ICG) with near-infrared fluorescence absorption is approved by the United States Food and Drug Administration for clinical applications in angiography, blood flow evaluation, and liver function assessment. It has strong optical absorption in the near-infrared region, where light can penetrate deepest into biological tissue. We sought to review its value in guiding prostate cancer treatment. Methods: All related literature at PubMed from January 2000 to December 2020 were reviewed. Results: Multiple preclinical studies have demonstrated the usefulness of ICG in identifying prostate cancer by using different engineering techniques. Clinical studies have demonstrated the usefulness of ICG in guiding sentinel node dissection during radical prostatectomy, and possible better preservation of neurovascular bundle by identifying landmark prostatic arteries. New techniques such as adding fluorescein in additional to ICG were tested in a limited number of patients with encouraging result. In addition, the use of the ICG was shown to be safe. Even though there are encouraging results, it does not carry sufficient sensitivity and specificity in replacing extended pelvic lymph node dissection during radical prostatectomy. Conclusion: Multiple preclinical and clinical studies have shown the usefulness of ICG in identifying and guiding treatment for prostate cancer. Larger randomized prospective studies are warranted to further test its usefulness and find new modified approaches.
|
Received: 10 August 2020
Available online: 20 January 2023
|
Corresponding Authors:
Yongda Liu
E-mail: 13719007083@163.com
|
|
|
[1] |
Leung K. Quenched indocyanine green-anti-prostate-speci?c membrane antigen antibody J591 [Internet]. In: Molecular imaging and contrast agent database (MICAD). Bethesda (MD): National Center for Biotechnology Information (US); 2011 Dec 08 [updated Mar 01, 2012]. https://pubmed.ncbi.nlm.nih.gov/22400137/.
|
[2] |
Achilefu S, Dorshow RB, Bugaj JE, Rajagopalan R. Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest Radiol 2000; 35:479e85.
pmid: 10946975
|
[3] |
Kneipp J, Kneipp H, Rice WL, Kneipp K. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 2005; 77:2381e5.
pmid: 15828770
|
[4] |
Bates AS, Patel VR. Applications of indocyanine green in ro-botic urology. J Robot Surg 2016; 10:357e9.
doi: 10.1007/s11701-016-0641-5
|
[5] |
Nakajima T, Mitsunaga M, Bander NH, Heston WD, Choyke PL, Kobayashi H. Targeted, activatable, in vivo fluorescence im-aging of prostate-speci?c membrane antigen (PSMA) positive tumors using the quenched humanized J591 antibody-indocyanine green (ICG) conjugate. Bioconjugate Chem 2011; 22:1700e5.
doi: 10.1021/bc2002715
|
[6] |
Kothapalli SR, Sonn GA, Choe JW, Nikoozadeh A, Bhuyan A, Park KK, et al. Simultaneous transrectal ultrasound and pho-toacoustic human prostate imaging. Sci Transl Med 2019; 11: eaav2169. https://doi.org/10.1126/scitranslmed.aav2169.
|
[7] |
Xia L, Zeh R, Mizelle J, Newton A, Predina J, Nie S, et al. Near-infrared intraoperative molecular imaging can identify meta-static lymph nodes in prostate cancer. Urology 2017; 106: 133e8.
doi: 10.1016/j.urology.2017.04.020
|
[8] |
van Leeuwen AC, Buckle T, Bendle G, Vermeeren L, Valdés Olmos R, van de Poel HG, et al. Tracer-cocktail injections for combined pre- and intraoperative multimodal imaging of lymph nodes in a spontaneous mouse prostate tumor model. J Biomed Opt 2011; 16:016004. https://doi.org/10.1117/1.3528027.
doi: 10.1117/1.3528027
|
[9] |
Kim G, Huang SW, Day KC, O’Donnell M, Agayan RR, Day MA, et al. Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging. J Biomed Opt 2007; 12: 044020. https://doi.org/10.1117/1.2771530.
doi: 10.1117/1.2771530
|
[10] |
Ranjan AP, Zeglam K, Mukerjee A, Thamake S, Vishwanatha JK. A sustained release formulation of chitosan modi?ed PLCL: poloxamer blend nanoparticles loaded with optical agent for animal imaging. Nanotechnology 2011; 22: 295104. https://doi.org/10.1088/0957-4484/22/29/295104.
doi: 10.1088/0957-4484/22/29/295104
|
[11] |
Souchek JJ, Wojtynek NE, Payne WM, Holmes MB, Dutta S, Qi B, et al. Hyaluronic acid formulation of near infrared flu-orophores optimizes surgical imaging in a prostate tumor xenograft. Acta Biomater 2018; 75:323e33.
doi: S1742-7061(18)30359-3
pmid: 29890268
|
[12] |
Yuen D, Gonder J, Proulx A, Liu H, Hutnik C. Comparison of the in vitro safety of intraocular dyes using two retinal cell lines: a focus on brilliant blue G and indocyanine green. Am J Ophthalmol 2009; 147:251e9.e2. https://doi.org/10.1016/j.ajo.2008.08.031.
doi: 10.1016/j.ajo.2008.08.031
pmid: 18992870
|
[13] |
Patel RH, Wadajkar AS, Patel NL, Kavuri VC, Nguyen KT, Liu H. Multifunctionality of indocyanine green-loaded biodegradable nanoparticles for enhanced optical imaging and hyperthermia intervention of cancer. J Biomed Opt 2012; 17:046003. https://doi.org/10.1117/1.JBO.17.4.046003.
doi: 10.1117/1.JBO.17.4.046003
|
[14] |
Sano K, Nakajima T, Ali T, Bartlett DW, Wu AM, Kim I, et al. Activatable fluorescent cys-diabody conjugated with indoc-yanine green derivative: consideration of fluorescent catab-olite kinetics on molecular imaging. J Biomed Opt 2013; 18: 101304. https://doi.org/10.1117/1.JBO.18.10.101304.
doi: 10.1117/1.JBO.18.10.101304
|
[15] |
Reichel D, Tripathi M, Butte P, Saouaf R, Perez JM. Tumor-activatable clinical nanoprobe for cancer imaging. Nano-theranostics 2019; 3:196e211.
|
[16] |
Ji C, Yuan A, Xu L, Zhang F, Zhang S, Zhao X, et al. Activatable photodynamic therapy for prostate cancer by NIR dye/pho-tosensitizer loaded albumin nanoparticles. J Biomed Nano-technol 2019; 15:311e8.
|
[17] |
Matsuoka D, Watanabe H, Shimizu Y, Kimura H, Yagi Y, Kawai R, et al. Structure-activity relationships of succinimidyl-Cys-C(O)-Glu derivatives with different near-infrared fluorophores as optical imaging probes for prostate-speci?c membrane antigen. Bioorg Med Chem 2018; 26: 2291e301.
doi: 10.1016/j.bmc.2018.03.015
|
[18] |
Mahounga DM, Shan L, Jie C, Du C, Wan S, Gu Y. Synthesis of a novel L-methyl-methionineeICG-Der-02 fluorescent probe for in vivo near infrared imaging of tumors. Mol Imag Biol 2012; 14: 699e707.
doi: 10.1007/s11307-012-0560-4
|
[19] |
Watanabe R, Sato K, Hanaoka H, Harada T, Nakajima T, Kim I, et al. Minibody-indocyanine green based activatable optical imaging probes: the role of short polyethylene glycol linkers. ACS Med Chem Lett 2014; 5:411e5.
doi: 10.1021/ml400533y
pmid: 24900850
|
[20] |
Bai J, Wang JT, Rubio N, Protti A, Heidari H, Elgogary R, et al. Triple-modal imaging of magnetically-targeted nanocapsules in solid tumours in vivo. Theranostics 2016; 6:342e56.
doi: 10.7150/thno.11918
pmid: 26909110
|
[21] |
Meershoek P, KleinJan GH, van Oosterom MN, Wit EM, van Willigen DM, Bauwens KP, et al. Multispectral fluorescence imaging as a tool to separate healthy and disease related lymphatic anatomies during robot-assisted laparoscopic pro-cedures. J Nucl Med 2018; 59:1757e60.
doi: 10.2967/jnumed.118.211888
|
[22] |
Jacquart A, Kéramidas M, Vollaire J, Boisgard R, Pottier G, Rustique E, et al. LipImagetm 815: novel dye-loaded lipid nanoparticles for long-term and sensitive in vivo near-infrared fluorescence imaging. J Biomed Opt 2013; 18:101311. https://doi.org/10.1117/1.JBO.18.10.101311.
doi: 10.1117/1.JBO.18.10.101311
|
[23] |
Chen Y, Pullambhatla M, Banerjee SR, Byun Y, Stathis M, Rojas C, et al. Synthesis and biological evaluation of low molecular weight fluorescent imaging agents for the prostate-speci?c membrane antigen. Bioconjugate Chem 2012; 23:2377e85.
doi: 10.1021/bc3003919
|
[24] |
Ruhi MK, Ak A, Gülsoy M. Dose-dependent photo-chemical/photothermal toxicity of indocyanine green-based therapy on three different cancer cell lines. Photodiagnosis Photodyn Ther 2018; 21:334e43.
doi: 10.1016/j.pdpdt.2018.01.008
|
[25] |
Colasanti A, Kisslinger A, Quarto M, Riccio P. Combined effects of radiotherapy and photodynamic therapy on an in vitro human prostate model. Acta Biochim Pol 2004; 51:1039e46.
pmid: 15625575
|
[26] |
Chen WR, Liu H, Ritchey JW, Bartels KE, Lucroy MD, Nordquist RE. Effect of different components of laser immu-notherapy in treatment of metastatic tumors in rats. Cancer Res 2002; 62:4295e9.
pmid: 12154032
|
[27] |
Joniau S, Van den Bergh L, Lerut E, Deroose CM, Haustermans K, Oyen R, et al. Mapping of pelvic lymph node metastases in prostate cancer. Eur Urol 2013; 63:450e8.
doi: 10.1016/j.eururo.2012.06.057
pmid: 22795517
|
[28] |
Heck MM, Retz M, Bandur M, Souchay M, Vitzthum E, Weirich G, et al. Topography of lymph node metastases in prostate cancer patients undergoing radical prostatectomy and extended lym-phadenectomy: results of a combined molecular and histo-pathologic mapping study. Eur Urol 2014; 66:222e9.
doi: 10.1016/j.eururo.2013.02.007
|
[29] |
Chennamsetty A, Zhumkhawala A, Tobis SB, Ruel N, Lau CS, Yamzon J, et al. Lymph node fluorescence during robot-assisted radical prostatectomy with indocyanine green: pro-spective dosing analysis. Clin Genitourin Cancer 2017; 15: e529 e34. https://doi.org/10.1016/j.clgc.2016.10.014.
doi: 10.1016/j.clgc.2016.10.014
|
[30] |
Inoue S, Shiina H, Arichi N, Mitsui Y, Hiraoka T, Wake K, et al. Identi?cation of lymphatic pathway involved in the spreading of prostate cancer by fluorescence navigation approach with intraoperatively injected indocyanine green. Can Urol Assoc J 2011; 5:254e9.
doi: 10.5489/cuaj.659
|
[31] |
Nguyen DP, Huber PM, Metzger TA, Genitsch V, Schudel HH, Thalmann GN. A speci?c mapping study using fluorescence sentinel lymph node detection in patients with intermediate-and high-risk prostate cancer undergoing extended pelvic lymph node dissection. Eur Urol 2016; 70:734e7.
doi: 10.1016/j.eururo.2016.01.034
|
[32] |
Hruby S, Englberger C, Lusuardi L, Sch ?tz T, Kunit T, Abdel-Aal AM, et al. Fluorescence guided targeted pelvic lymph node dissection for intermediate and high risk prostate cancer. J Urol 2015; 194:357e63.
doi: 10.1016/j.juro.2015.03.127
pmid: 25896557
|
[33] |
Miki J, Yanagisawa T, Tsuzuki S, Mori K, Urabe F, Kayano S, et al. Anatomical localization and clinical impact of sentinel lymph nodes based on patterns of pelvic lymphatic drainage in clinically localized prostate cancer. Prostate 2018; 78:419e25.
doi: 10.1002/pros.23486
pmid: 29368339
|
[34] |
Shimbo M, Endo F, Matsushita K, Hattori K. Impact of indocyanine green-guided extended pelvic lymph node dissection during robot-assisted radical prostatectomy. Int J Urol 2020; 27:845e50.
doi: 10.1111/iju.14306
|
[35] |
Yuen K, Miura T, Sakai I, Kiyosue A, Yamashita M. Intra-operative fluorescence imaging for detection of sentinel lymph nodes and lymphatic vessels during open prostatectomy using indocyanine green. J Urol 2015; 194:371e7.
doi: 10.1016/j.juro.2015.01.008
|
[36] |
Ramírez-Backhaus M, Mira Moreno A, Gómez Ferrer A, Cala-trava Fons A, Casanova J, Solsona Narbón E, et al. Indocyanine green guided pelvic lymph node dissection: an ef?cient technique to classify the lymph node status of patients with prostate cancer who underwent radical prostatectomy. J Urol 2015; 196:1429e35.
|
[37] |
Manny TB, Patel M, Hemal AK. Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 pa-tients. Eur Urol 2014; 65:1162e8.
doi: 10.1016/j.eururo.2013.11.017
pmid: 24289911
|
[38] |
Aoun F, Albisinni S, Zanaty M, Hassan T, Janetschek G, van Velthoven R. Indocyanine green fluorescence-guided sentinel lymph node identi?cation in urologic cancers: a systematic review and meta-analysis. Minerva Urol Nefrol 2018; 70: 361e9.
|
[39] |
KleinJan GH, Bunschoten A, van den Berg NS, Olmos RA, Klop WM, Horenblas S, et al. Fluorescence guided surgery and tracer-dose, fact or ?ction? Eur J Nucl Med Mol Imag 2016; 43:1857e67.
doi: 10.1007/s00259-016-3372-y
|
[40] |
van Oosterom MN, van der Poel HG, Meershoek P, Welling MM, Pinto F, et al. Extending the hybrid surgical guidance concept with freehand fluorescence to-mography. IEEE Trans Med Imag 2020; 39:226e35.
doi: 10.1109/TMI.2019.2924254
|
[41] |
van der Poel HG, Buckle T, Brouwer OR, Valdés Olmos RA. Intraoperative laparoscopic fluorescence guid-ance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol 2011; 60:826e33.
doi: 10.1016/j.eururo.2011.03.024
|
[42] |
KleinJan GH, van den Berg NS, Brouwer OR, de Jong J, Acar C, Wit EM, et al. Optimisation of fluorescence guidance during robot-assisted laparoscopic sentinel node biopsy for prostate cancer. Eur Urol 2014; 66:991e8.
doi: 10.1016/j.eururo.2014.07.014
pmid: 25092539
|
[43] |
Jeschke S, Lusuardi L, Myatt A, Hruby S, Pirich C, Janetschek G. Visualisation of the lymph node pathway in real time by laparoscopic radioisotope- and fluorescence-guided sentinel lymph node dissection in prostate cancer staging. Urology 2012; 80:1080e6.
doi: 10.1016/j.urology.2012.05.050
pmid: 22990053
|
[44] |
KleinJan GH, van den Berg NS, de Jong J, Wit EM, Thygessen H, Vegt E, et al. Multimodal hybrid imaging agents for sentinel node mapping as a means to (re)connect nuclear medicine to advances made in robot-assisted surgery. Eur J Nucl Med Mol Imag 2016; 43:1278e87.
doi: 10.1007/s00259-015-3292-2
|
[45] |
KleinJan GH, van Werkhoven E, van den Berg NS, Karakullukcu MB, Zijlmans HJMAA, van der Hage JA, et al. The best of both worlds: a hybrid approach for optimal pre- and intraoperative identi?cation of sentinel lymph nodes. Eur J Nucl Med Mol Imag 2018; 45:1915e25.
doi: 10.1007/s00259-018-4028-x
|
[46] |
Hinsenveld FJ, Wit EMK, van Leeuwen PJ, Brouwer OR, Donswijk ML, Tillier CN, et al. Prostate-speci?c membrane antigen positron emission tomography/computed tomography combined with sentinel node biopsy for primary lymph node staging in prostate cancer. J Nucl Med 2020; 61:540e5.
|
[47] |
Buckle T, Brouwer OR, Valdés Olmos RA, van der Poel HG, van Leeuwen FW. Relationship between intraprostatic tracer de-posits and sentinel lymph node mapping in prostate cancer patients. J Nucl Med 2012; 53:1026e33.
doi: 10.2967/jnumed.111.098517
|
[48] |
Harke NN, Godes M, Wagner C, Addali M, Fangmeyer B, Urbanova K, et al. Fluorescence-supported lymphography and extended pelvic lymph node dissection in robot-assisted radical prostatectomy: a prospective, randomized trial. World J Urol 2018; 36:1817e23.
doi: 10.1007/s00345-018-2330-7
pmid: 29767326
|
[49] |
Kumar A, Samavedi S, Bates A, Coelho R, Rocco B, Marquinez J, et al. V36 Use of intra-operative indocyanine green and Firefly? technology to visualize the “landmark ar-tery” for nerve sparing robot assisted radical prostatectomy. Eur Urol Suppl 2015;14:eV36. https://doi.org/10.1016/S1569-9056(15)61120-4.
|
[50] |
Mangano MS, De Gobbi A, Beniamin F, Lamon C, Ciaccia M, Maccatrozzo L. Robot-assisted nerve-sparing radical prosta-tectomy using near-infrared fluorescence technology and indocyanine green: initial experience. Urologia 2018; 85: 29e31.
doi: 10.5301/uj.5000244
pmid: 28574144
|
[51] |
Lopez A, Zlatev DV, Mach KE, Bui D, Liu JJ, Rouse RV, et al. Intraoperative optical biopsy during robotic assisted radical prostatectomy using confocal endomicroscopy. J Urol 2016; 195:1110e7.
doi: 10.1016/j.juro.2015.10.182
pmid: 26626214
|
[52] |
van den Berg NS, Buckle T, KleinJan GH, van der Poel FWB. Multispectral fluorescence imaging during robot-assisted laparoscopic sentinel node biopsy: a ?rst step towards a fluorescence-based anatomic roadmap. Eur Urol 2017; 72:110e7.
doi: 10.1016/j.eururo.2016.06.012
|
[53] |
van Willigen DM, van den Berg NS, Buckle T, KleinJan GH, Hardwick JC, van der Poel HG, et al. Multispectral fluores-cence guided surgery; a feasibility study in a phantom using a clinical-grade laparoscopic camera system. Am J Nucl Med Mol Imaging 2017; 7:138e47.
pmid: 28721307
|
[1] |
Hua Gong,Kang Chen,Lan Zhou,Yongchao Jin,Weihua Chen. Deleted in liver cancer 1 suppresses the growth of prostate cancer cells through inhibiting Rho-associated protein kinase pathway[J]. Asian Journal of Urology, 2023, 10(1): 50-57. |
[2] |
Leandro Blas,Masaki Shiota,Shohei Nagakawa,Shigehiro Tsukahara,Takashi Matsumoto,Ken Lee,Keisuke Monji,Eiji Kashiwagi,Junichi Inokuchi,Masatoshi Eto. Validation of user-friendly models predicting extracapsular extension in prostate cancer patients[J]. Asian Journal of Urology, 2023, 10(1): 81-88. |
[3] |
Liang G. Qu,Gregory Jack,Marlon Perera,Melanie Evans,Sue Evans,Damien Bolton,Nathan Papa. Impact of delay from transperineal biopsy to radical prostatectomy upon objective measures of cancer control[J]. Asian Journal of Urology, 2022, 9(2): 170-176. |
[4] |
Jie Cao,Chunxue Peng,Xiaoying Lu,Lingjun Zhou,Jing Wu. Factors influencing the degree of participation in surgical decision-making among Chinese patients with prostate cancer: A qualitative research[J]. Asian Journal of Urology, 2022, 9(2): 177-185. |
[5] |
Georgios Tsampoukas,Victor Manolas,Dominic Brown,Athanasios Dellis,Konstantinos Deliveliotis,Mohamad Moussa,Athanasios Papatsoris. Atypical small acinar proliferation and its significance in pathological reports in modern urological times[J]. Asian Journal of Urology, 2022, 9(1): 12-17. |
[6] |
Christa Babst,Thomas Amiel,Tobias Maurer,Sophie Knipper,Lukas Lunger,Robert Tauber,Margitta Retz,Kathleen Herkommer,Matthias Eiber,Gunhild von Amsberg,Markus Graefen,Juergen Gschwend,Thomas Steuber,Matthias Heck. Cytoreductive radical prostatectomy after chemohormonal therapy in patients with primary metastatic prostate cancer[J]. Asian Journal of Urology, 2022, 9(1): 69-74. |
[7] |
Edward K. Chang,Adam J. Gadzinski,Yaw A. Nyame. Blood and urine biomarkers in prostate cancer: Are we ready for reflex testing in men with an elevated prostate-specific antigen?[J]. Asian Journal of Urology, 2021, 8(4): 343-353. |
[8] |
Luke P. O’Connor,Shayann Ramedani,Michael Daneshvar,Arvin K. George,Andre Luis Abreu,Giovanni E. Cacciamani,Amir H. Lebastchi. Future perspective of focal therapy for localized prostate cancer[J]. Asian Journal of Urology, 2021, 8(4): 354-361. |
[9] |
Akira Kurozumi,Shawn E. Lupold. Alternative polyadenylation: An untapped source for prostate cancer biomarkers and therapeutic targets?[J]. Asian Journal of Urology, 2021, 8(4): 407-415. |
[10] |
Wattanachai Ratanapornsompong,Suthep Pacharatakul,Premsant Sangkum,Chareon Leenanupan,Wisoot Kongcharoensombat. Effect of puboprostatic ligament preservation during robotic-assisted laparoscopic radical prostatectomy on early continence: Randomized controlled trial[J]. Asian Journal of Urology, 2021, 8(3): 260-268. |
[11] |
Zepeng Jia,Yifan Chang,Yan Wang,Jing Li,Min Qu,Feng Zhu,Huan Chen,Bijun Lian,Meimian Hua,Yinghao Sun,Xu Gao. Sustainable functional urethral reconstruction: Maximizing early continence recovery in robotic-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(1): 126-133. |
[12] |
Simeng Wen,Yuanjie Niu,Haojie Huang. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 203-218. |
[13] |
Ieva Eringyte,Joanna N. Zamarbide Losada,Sue M. Powell,Charlotte L. Bevan,Claire E. Fletcher. Coordinated AR and microRNA regulation in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 233-250. |
[14] |
Yezi Zhu,Jun Luo. Regulation of androgen receptor variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 251-257. |
[15] |
Ramesh Narayanan. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 271-283. |
|
|
|
|