Please wait a minute...
Search Asian J Urol Advanced Search
Share 
Asian Journal of Urology, 2024, 11(4): 633-641    doi: 10.1016/j.ajur.2023.01.006
  本期目录 | 过刊浏览 | 高级检索 |
Genitourinary toxicity after pelvic radiation: Prospective review of complex urological presentations
Rowan V. Davidab*(),Asif Islama,John Millera,Michael E. O'Callaghanab,Arman A. Kahokehrab
aDepartment of Urology, Lyell McEwin Hospital, Elizabeth Vale, Adelaide, Australia
bCollege of Medicine and Public Health, Flinders University, Bedford Park South Australia, Adelaide, Australia
下载:  HTML  PDF (933KB) 
输出:  BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract: 

Objective: Recent randomised controlled trials underestimated the incidence of genitourinary (GU) complications occurring more than 5 years following pelvic radiotherapy. This study aimed to determine the burden of treatment at a single institution from late GU complications after pelvic radiotherapy.

Methods: A prospective study of all presentations for GU complications following pelvic radiotherapy at a tertiary urology department between November 2018 and November 2019 was performed. Subgroup analyses was performed on patients with prostate cancer (PCa) with late toxicity to compare patient demographics, radiotherapy, complications, and management factors.

Results: There were 117 hospital encounters involving 46 patients with a 56.4% repeat encounter rate. Patients with PCa were the predominant group (n=39, 84.8%). External beam radiotherapy was the most common treatment modality (n=41, 89.1%). The median time from radiotherapy to encounter was 8 (range 0-23) years. Radiation-induced haemorrhagic cystitis was the most common presentation (n=70, 59.8%). Forty-four (42.7%) encounters for GU toxicity were managed operatively and 33 (32.0%) involved a non-operative procedure. Nine patients required packed red cell transfusion, with a total of 154 units transfused. Patients with PCa who presented with late GU toxicity had higher median Radiotherapy Oncology Group grades (p=0.020), proportion of emergency admissions (p=0.047), and frequency of clot urinary retention (p<0.001).

Conclusion: There is a high burden of elective and emergency urology workload attributed to late pelvic radiation toxicity. Late GU toxicity occurring ≥5 years after radiotherapy is common and often more severe.

Key words:  Pelvic malignancy    Radiotherapy    Genitourinary toxicity    Hospitalisation    Secondary malignancy
收稿日期:  2022-07-21           接受日期:  2023-01-09      出版日期:  2024-10-20      发布日期:  2024-11-20      整期出版日期:  2024-10-20
引用本文:    
. [J]. Asian Journal of Urology, 2024, 11(4): 633-641.
Rowan V. David, Asif Islam, John Miller, Michael E. O'Callaghan, Arman A. Kahokehr. Genitourinary toxicity after pelvic radiation: Prospective review of complex urological presentations. Asian Journal of Urology, 2024, 11(4): 633-641.
链接本文:  
http://www.ajurology.com/CN/10.1016/j.ajur.2023.01.006  或          http://www.ajurology.com/CN/Y2024/V11/I4/633
Characteristic Overall, n=46 Time from radiotherapy
<5 years, n=15 ≥5 years, n=31 p-Valuea
Toxicityb 0.72c
Fistula 1 (2.2) 0 (0) 1 (3.2)
Haematuria 34 (73.9) 11 (73.3) 23 (74.2)
Incontinence 1 (2.2) 1 (6.7) 0 (0)
RASM 2 (4.3) 1 (6.7) 1 (3.2)
Retention 2 (4.3) 0 (0) 2 (6.5)
Stricture 6 (13.0) 2 (13.3) 4 (12.9)
Age, year <0.01d
Median (IQR) 71 (65-76) 76 (72-80) 68 (64-72)
Range 49-85 55-85 49-82
CCIb 0.61e
≤7 27 (58.7) 8 (53.3) 19 (61.3)
>7 19 (41.3) 7 (46.7) 12 (38.7)
Antiplateletb 0.33c
Yes 20 (43.5) 5 (33.3) 15 (48.4)
No 26 (56.5) 10 (66.7) 16 (51.6)
Anticoagulantb >0.99e
Yes 12 (26.1) 4 (26.7) 8 (25.8)
No 34 (73.9) 11 (73.3) 23 (74.2)
Primary cancerb 0.01e
Bladder 4 (8.7) 4 (26.7) 0 (0)
Colorectal 2 (4.3) 0 (0) 2 (6.5)
Prostate 39 (84.8) 11 (73.3) 28 (90.3)
Vulval 1 (2.2) 0 (0) 1 (3.2)
Stage 0.08c
≤2b 26 (76.5) 6 (54.5) 20 (87.0)
>2b 8 (23.5) 5 (45.5) 3 (13.0)
Missing, n 12 4 8
Treatment modalityb >0.99c
BT 2 (4.3) 0 (0) 2 (6.5)
EBRT 41 (89.1) 14 (93.3) 27 (87.1)
EBRT and BT 3 (6.5) 1 (6.7) 2 (6.5)
Treatment technique 0.03c
IMRTb 12 (63.2) 9 (90.0) 3 (33.3)
LDRb 1 (5.3) 0 (0) 1 (11.1)
VMATb 6 (31.6) 1 (10.0) 5 (55.6)
Missing, n 27 5 22
Treatment intent 0.71c
Adjuvantb 2 (4.9) 0 (0) 2 (7.4)
Curativeb 32 (78.0) 12 (85.7) 20 (74.1)
Palliativeb 2 (4.9) 0 (0) 2 (7.4)
Salvageb 5 (12.2) 2 (14.3) 3 (11.1)
Missing, n 5 1 4
Dose, Gy 0.57e
≤70b 24 (85.7) 7 (77.8) 17 (89.5)
>70b 4 (14.3) 2 (22.2) 2 (10.5)
Missing, n 18 6 12
Fraction 0.84d
Median (IQR) 33 (28-35) 32 (32-33) 33 (26-35)
Range 20-40 23-40 20-37
Dose, Gy per fractionb >0.99c
<2 9 (32.1) 3 (33.3) 6 (31.6)
≥2 19 (67.9) 6 (66.7) 13 (68.4)
  
Characteristic Overall, n=39 Haematuria
Yes, n=30 No, n=9 p-Valuea
Antiplatelet, n (%) >0.99
Yes 18 (46.2) 14 (46.7) 4 (44.4)
No 21 (53.8) 16 (53.3) 5 (55.6)
Antiplatelet name, n (%) >0.99
Aspirin 13 (33.3) 10 (33.3) 3 (33.3)
Aspirin and clopidogrel 1 (2.6) 1 (3.3) 0 (0)
Clopidogrel 4 (10.3) 3 (10.0) 1 (11.1)
None 21 (53.8) 16 (53.3) 5 (55.6)
Anticoagulant, n (%) 0.40
Yes 11 (28.2) 10 (33.3) 1 (11.1)
No 28 (71.8) 20 (66.7) 8 (88.9)
Anticoagulant name, n (%) 0.44
Apixaban 7 (17.9) 7 (23.3) 0 (0)
Rivaroxaban 1 (2.6) 1 (3.3) 0 (0)
Warfarin 3 (7.7) 2 (6.7) 1 (11.1)
None 28 (71.8) 20 (66.7) 8 (88.9)
Indication, n (%) 0.24
AF 8 (27.6) 6 (25.0) 2 (40.0)
CVA 2 (6.9) 2 (8.3) 0 (0)
IHD 9 (31.0) 9 (37.5) 0 (0)
PE 2 (6.9) 2 (8.3) 0 (0)
Primary prevention 7 (24.1) 4 (16.7) 3 (60.0)
VTE 1 (3.4) 1 (4.2) 0 (0)
  
  
  
Characteristic Time from radiotherapy
<5 years, n=5 ≥5 years, n=3
Post RT UC, n (%)
CIS 1 (20.0) 0 (0)
HG pTa 1 (20.0) 0 (0)
LG pTa 2 (40.0) 2 (66.7)
HG pT2 1 (20.0) 1 (33.3)
Age, year
Median (IQR) 74 (69-84) 69 (68-77)
Range 67-85 67-84
CCI, n (%)
≤7 4 (80.0) 2 (66.7)
>7 1 (20.0) 1 (33.3)
Primary cancer, n (%)
Bladder 0 (0) 0 (0)
Colorectal 0 (0) 0 (0)
Prostate 4 (80.0) 2 (66.7)
Vulval 1 (20.0) 1 (33.3)
Treatment modality, n (%)
BT 2 (40.0) 2 (66.7)
EBRT 2 (40.0) 1 (33.3)
EBRT and BT 1 (20.0) 0 (0)
Treatment intent, n (%)
Adjuvant 1 (20.0) 1 (33.3)
Curative 4 (80.0) 2 (66.7)
  
Characteristic Overall, n=103 Delayed late toxicity
<5 years, n=33 ≥5 years, n=70 p-Valuea
RTOG grade 0.020b
Median (IQR) 3 (3-4) 3 (3-3.25) 4 (3-4)
Range 1-4 2-4 1-4
Encounter, n (%) 103 (100) 33 (100) 70 (100)
Admission, n (%) 42 (40.8) 11 (33.3) 31 (44.3) 0.29c
Representation, n (%) 60 (58.3) 23 (69.7) 37 (52.9) 0.11c
Unplanned representation, n (%) 26 (25.2) 7 (21.2) 19 (27.1) 0.52c
Readmission, n (%) 0.55d
Single admission 84 (81.6) 28 (84.8) 56 (80.0)
Readmission 19 (18.4) 5 (15.2) 14 (20.0)
Unplanned readmission, n (%) 13 (12.6) 3 (9.1) 10 (14.3) 0.54c
Encounter category, n (%) 0.047d
Elective 54 (52.4) 22 (66.7) 32 (45.7)
Emergency 49 (47.6) 11 (33.3) 38 (54.3)
Location, n (%) 0.070d
ED 48 (46.6) 10 (30.3) 38 (54.3)
Flexible cystoscopy clinic 22 (21.4) 7 (21.2) 15 (21.4)
OPD 23 (22.3) 11 (33.3) 12 (17.1)
OR 10 (9.7) 5 (15.2) 5 (7.1)
Length of stay, day 0.27b
Median (IQR) 3 (2-4) 2 (1-4.5) 3 (2-4)
Range 1-20 1-20 1-12
Toxicity type, n (%) <0.001d
Necrotic bladder neck contracture 2 (1.9) 0 (0) 2 (2.9)
Clot retention 31 (30.1) 2 (6.1) 29 (41.4)
High pressure retention 1 (1.0) 1 (3.0) 0 (0)
Overactive bladder 6 (5.8) 6 (18.2) 0 (0)
Painless haematuria 34 (33.0) 15 (45.5) 19 (27.1)
RASM 4 (3.9) 1 (3.0) 3 (4.3)
Rectoprostatic fistula 9 (8.7) 3 (9.1) 6 (8.6)
Rectovesical fistula 2 (1.9) 0 (0) 2 (2.9)
Ureteric stricture 3 (2.9) 2 (6.1) 1 (1.4)
Urethral stricture 11 (10.7) 3 (9.1) 8 (11.4)
Procedure category, n (%) 0.51d
No procedure 26 (25.2) 11 (33.3) 15 (21.4)
Non-operative 33 (32.0) 8 (24.2) 25 (35.7)
Operative major 4 (3.9) 1 (3.0) 3 (4.3)
Operative minor 40 (38.8) 13 (39.4) 27 (38.6)
Procedure type, n (%) 0.09d
BNI 1 (1.3) 0 (0) 1 (1.8)
Continuous bladder irrigation 27 (35.1) 5 (22.7) 22 (40.0)
Cystoscopy biopsy 5 (6.5) 3 (13.6) 2 (3.6)
Cystoscopy washout diathermy 3 (3.9) 0 (0) 3 (5.5)
Defunctioning colostomy 1 (1.3) 0 (0) 1 (1.8)
Flexible cystoscopy 20 (26.0) 7 (31.8) 13 (23.6)
IDC procedure 7 (9.1) 1 (4.5) 6 (10.9)
Nephrostomy exchange 1 (1.3) 0 (0) 1 (1.8)
Stent procedure 2 (2.6) 2 (9.1) 0 (0)
TOV 2 (2.6) 2 (9.1) 0 (0)
TURBT 3 (3.9) 1 (4.5) 2 (3.6)
Urethral dilation 5 (6.5) 1 (4.5) 4 (7.3)
  
[1] Sheets NC, Goldin GH, Meyer AM, Wu Y, Chang Y, Sturmer T, et al. Intensity-modulated radiation therapy, proton therapy, or conformal radiation therapy and morbidity and disease control in localized prostate cancer. JAMA 2012; 307:1611-20.
doi: 10.1001/jama.2012.460 pmid: 22511689
[2] Bekelman JE, Mitra N, Efstathiou J, Liao K, Sunderland R, Yeboa DN, et al. Comparative effectiveness of intensity modulated (IMRT) versus 3D conformal (CRT) radiotherapy for non-metastatic prostate cancer. Int J Radiat Oncol Biol Phys 2010; 78:S77. https://doi.org/10.1016/j.ijrobp.2010.07.211.
[3] de la Taille A, Zerbib M. [Urologic complications of radiotherapy]. Ann Urol 2003; 37:345-57. [Article in French].
pmid: 14717037
[4] Wallis CJD, Glaser A, Hu JC, Huland H, Lawrentschuk N, Moon D, et al. Survival and complications following surgery and radiation for localized prostate cancer: an international collaborative review. Eur Urol 2018; 73:11-20.
doi: S0302-2838(17)30495-5 pmid: 28610779
[5] Boysen WR, Inouye B, Peterson AC. Admissions for radiation cystitis are increasing among cancer survivors in the United States: analysis of the health care cost and utilization project (HCUP). J Urol 2020; 203(Suppl 4):e600-1. https://doi.org/10.1097/JU.0000000000000890.015.
[6] Bekelman JE, Mitra N, Efstathiou J, Liao K, Sunderland R, Yeboa DN, et al. Outcomes after intensity-modulated versus conformal radiotherapy in older men with nonmetastatic prostate cancer. Int J Radiat Oncol Biol Phys 2011; 81:e325-34. https://doi.org/10.1016/j.ijrobp.2011.02.006.
[7] Wilt TJ, MacDonald R, Rutks I, Shamliyan TA, Taylor BC, Kane RL. Systematic review: comparative effectiveness and harms of treatments for clinically localized prostate cancer. Ann Intern Med 2008; 148:435-48.
doi: 10.7326/0003-4819-148-6-200803180-00209 pmid: 18252677
[8] Hummel S, Paisley S, Morgan A, Currie E, Brewer N. Clinical and cost-effectiveness of new and emerging technologies for early localised prostate cancer: a systematic review. Health Technol Assess 2003; 7(iii, ixex):1-157. https://doi.org/10.3310/hta7330.
[9] Bentzen SM. Randomized controlled trials in health technology assessment: overkill or overdue? Radiother Oncol 2008; 86:142-7.
doi: 10.1016/j.radonc.2008.01.012 pmid: 18237799
[10] Ma JL, Hennessey DB, Newell BP, Bolton DM, Lawrentschuk N. Radiotherapy-related complications presenting to a urology department: a more common problem than previously thought? BJU Int 2018; 121:28-32.
[11] Kneebone A, Gysen KV. Is radiotherapy the work of the devil? BJU Int 2018; 121:6-7.
[12] Hoffmann R, Islam A, Kahokehr A. Radiation cystitis and burden of careda snapshot study. BJU Int 2019; 123(S2): 50. https://doi.org/10.1111/bju.14724.
[13] Choi EC, Kim YB, Kim JY, Kim YS, Chun M, Park W, et al. Risk factors of radiation-related secondary malignancy in pelvis after radiotherapy for cervical cancer: multi-institutional study in korea. Int J Radiat Oncol Biol Phys 2017; 99:E287. https://doi.org/10.1016/j.ijrobp.2017.06.1287.
[14] Gladdy RA, Qin LX, Moraco N, Edgar MA, Antonescu CR, Alektiar KM, et al. Do radiation-associated soft tissue sarcomas have the same prognosis as sporadic soft tissue sarcomas? J Clin Oncol 2010; 28:2064-9.
doi: 10.1200/JCO.2009.25.1728 pmid: 20308666
[15] Cox JD, Stetz J, Pajak TF. Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC). Int J Radiat Oncol Biol Phys 1995; 31:1341-6.
[16] Handmer M, Martin J, Tiu A. Costing urologic complications following pelvic radiation therapy. Urology 2020; 140:64-9.
doi: S0090-4295(20)30270-3 pmid: 32194089
[17] Mazzone E, Mistretta FA, Knipper S, Palumbo C, Tian Z, Pecoraro A, et al. Long-term incidence of secondary bladder and rectal cancer in patients treated with brachytherapy for localized prostate cancer: a large-scale population-based analysis. BJU Int 2019; 124:1006-13.
doi: 10.1111/bju.14841 pmid: 31144770
[18] Zelefsky MJ, Pei X, Teslova T, Kuk D, Magsanoc JM, Kollmeier M, et al. Secondary cancers after intensitymodulated radiotherapy, brachytherapy and radical prostatectomy for the treatment of prostate cancer: incidence and cause-specific survival outcomes according to the initial treatment intervention. BJU Int 2012; 110:1696-701.
doi: 10.1111/j.1464-410X.2012.11385.x pmid: 22889401
[19] Moschini M, Zaffuto E, Karakiewicz PI, Andrea DD, Foerster B, Abufaraj M, et al. External beam radiotherapy increases the risk of bladder cancer when compared with radical prostatectomy in patients affected by prostate cancer: a population-based analysis. Eur Urol 2019; 75:319-28.
doi: S0302-2838(18)30722-X pmid: 30293908
[20] Michalski JM, Yan Y, Watkins-Bruner D, Bosch WR, Winter K, Galvin JM, et al. Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the Radiation Therapy Oncology Group 0126 prostate cancer trial. Int J Radiat Oncol Biol Phys 2013; 87:932-8.
[21] Koper PC, Stroom JC, van Putten WL, Korevaar GA, Heijmen BJ, Wijnmaalen A, et al. Acute morbidity reduction using 3DCRT for prostate carcinoma: a randomized study. Int J Radiat Oncol Biol Phys 1999; 43:727-34.
[22] Morris DE, Emami B, Mauch PM, Konski AA, Tao ML, Ng AK, et al. Evidence-based review of three-dimensional conformal radiotherapy for localized prostate cancer: an ASTRO outcomes initiative. Int J Radiat Oncol Biol Phys 2005; 62:3-19.
No related articles found!
[1] Brian W. Chao, Daniel D. Eun. Robotic reconstructive surgery: The time has arrived[J]. Asian Journal of Urology, 2024, 11(3): 339 -340 .
[2] Tenny R. Zhang, Ashley Alford, Lee C. Zhao. Summarizing the evidence for robotic-assisted bladder neck reconstruction: Systematic review of patency and incontinence outcomes[J]. Asian Journal of Urology, 2024, 11(3): 341 -347 .
[3] Jonathan Rosenfeld, Devin Boehm, Aidan Raikar, Devyn Coskey, Matthew Lee, Emily Ji, Ziho Lee. A review of complications after ureteral reconstruction[J]. Asian Journal of Urology, 2024, 11(3): 348 -356 .
[4] Luis G. Medina, Randall A. Lee, Valeria Celis, Veronica Rodriguez, Jaime Poncel, Aref S. Sayegh, Rene Sotelo. Robotic management of urinary fistula[J]. Asian Journal of Urology, 2024, 11(3): 357 -365 .
[5] Shuaishuai Chai, Hao Zhang, Gong Cheng, Jiawei Chen, Xincheng Gao, Yuancheng Zhou, Xingyuan Xiao, Bing Li. Minimally invasive reconstruction of extensive mid-lower ureteral strictures using a bilateral Boari flap[J]. Asian Journal of Urology, 2024, 11(3): 377 -383 .
[6] David Strauss, Eric Cho, Matthew Loecher, Matthew Lee, Daniel Eun. Description of a novel robotic early post-prostatectomy anastomotic repair technique and institutional outcomes[J]. Asian Journal of Urology, 2024, 11(3): 366 -372 .
[7] Matthew Lee, Elizabeth Nagoda, David Strauss, Matthew Loecher, Michael Stifelman, Lee Zhao. Role of buccal mucosa graft ureteroplasty in the surgical management of pyeloplasty failure[J]. Asian Journal of Urology, 2024, 11(3): 373 -376 .
[8] Yiren Yang, Xinxin Gan, Wei Zhang, Baohua Zhu, Zhao Huangfu, Xiaolei Shi, Linhui Wang. Research progress of the Hippo signaling pathway in renal cell carcinoma[J]. Asian Journal of Urology, 2024, 11(4): 511 -520 .
[9] Sidhartha Kalra, Atanu Kumar Pal, Lalgudi Narayanan Dorairajan. Understanding female urinary continence—lessons from complications of female urethral surgery[J]. Asian Journal of Urology, 2024, 11(3): 504 -506 .
[10] Claudia-Gabriela Moldovanu. Virtual and augmented reality systems and three-dimensional printing of the renal model—novel trends to guide preoperative planning for renal cancer[J]. Asian Journal of Urology, 2024, 11(4): 521 -529 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed