Please wait a minute...
Search Asian J Urol Advanced Search
Share 
Asian Journal of Urology, 2024, 11(2): 221-241    doi: 10.1016/j.ajur.2022.11.005
  本期目录 | 过刊浏览 | 高级检索 |
Metabolomics for the diagnosis of bladder cancer: A systematic review
Herney Andrés García-Perdomoab*(),Angélica María Dávila-Raigozab,Fernando Korkesc
aDivision of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia
bUROGIV Research Group, School of Medicine, Universidad del Valle, Cali, Colombia
cUrologic Oncology, Division of Urology, ABC Medical School, Sao Paulo, Brazil
下载:  HTML  PDF (2292KB) 
输出:  BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract: 

Objective: Metabolomics has been extensively utilized in bladder cancer (BCa) research, employing mass spectrometry and nuclear magnetic resonance spectroscopy to compare various variables (tissues, serum, blood, and urine). This study aimed to identify potential biomarkers for early BCa diagnosis.

Methods: A search strategy was designed to identify clinical trials, descriptive and analytical observational studies from databases such as Medline, Embase, Cochrane Central Register of Controlled Trials, and Latin American and Caribbean Literature in Health Sciences. Inclusion criteria comprised studies involving BCa tissue, serum, blood, or urine profiling using widely adopted metabolomics techniques like mass spectrometry and nuclear magnetic resonance. Primary outcomes included description of metabolites and metabolomics profiling in BCa patients and the association of metabolites and metabolomics profiling with BCa diagnosis compared to control patients. The risk of bias was assessed using the Quality Assessment of Studies of Diagnostic Accuracy.

Results: The search strategy yielded 2832 studies, of which 30 case-control studies were included. Urine was predominantly used as the primary sample for metabolite identification. Risk of bias was often unclear inpatient selection, blinding of the index test, and reference standard assessment, but no applicability concerns were observed. Metabolites and metabolomics profiles associated with BCa diagnosis were identified in glucose, amino acids, nucleotides, lipids, and aldehydes metabolism.

Conclusion: The identified metabolites in urine included citric acid, valine, tryptophan, taurine, aspartic acid, uridine, ribose, phosphocholine, and carnitine. Tissue samples exhibited elevated levels of lactic acid, amino acids, and lipids. Consistent findings across tissue, urine, and serum samples revealed downregulation of citric acid and upregulation of lactic acid, valine, tryptophan, taurine, glutamine, aspartic acid, uridine, ribose, and phosphocholine.

Key words:  Metabolite    Metabolomics    Bladder cancer    Metabolomics profile
收稿日期:  2022-01-14           接受日期:  2022-11-29      出版日期:  2024-04-20      发布日期:  2024-04-28      整期出版日期:  2024-04-20
引用本文:    
. [J]. Asian Journal of Urology, 2024, 11(2): 221-241.
Herney Andrés García-Perdomo, Angélica María Dávila-Raigoza, Fernando Korkes. Metabolomics for the diagnosis of bladder cancer: A systematic review. Asian Journal of Urology, 2024, 11(2): 221-241.
链接本文:  
http://www.ajurology.com/CN/10.1016/j.ajur.2022.11.005  或          http://www.ajurology.com/CN/Y2024/V11/I2/221
Metabolomics technique Advantage Disadvantage Applicable substance
NMR spectroscopy -High reproducibility, straightforward sample preparation, preservation of molecular integrity, potential sample reuse, cost-effectiveness, and greater ease of identification compared to MS [14] -Lower detectable metabolites in urine sample and lower sensitivity compared to MS [14] -Body fluids, in vivo and in situ studies [13]
GC-MS -Higher specificity and sensitivity, available for comparison with a standard, and can be used for both targeted and nontargeted analyses compared to NMR spectroscopy [12] -The manipulation of low volatile molecules can present difficulties [12] -Heat stable, volatile, medium, and low polar molecules [14]
LC-MS -Higher specificity and sensitivity, available for comparison with a standard, and can be used for both targeted and nontargeted analyses compared to NMR spectroscopy [12,14] -Low retention for hydrophilic molecules and no complete database to compare with a standard [14] -Most compounds, including those that exhibit heat-lability, nonvolatility, and resistance to derivatization [12]
  
  
Study Country Participant, n Gender Age, year Analytical platform Sample type Cancer Pt, n Control, n Metabolite up-regulated in BCa Metabolite down-regulated in BCa
Srivastava et al., 2010 [21] India 103 ? Male and female ? BCa: 45±25a (range 20-70)
? Control: 35±15a (range 20-50)
? H-NMR Urine 33 ? 70
o-
HC: 37
o-
UTI: 31
o-
BS: 2
? Tau ? Hippuric acid, citrate, and Phe
Kim et al., 2010 [23] Republic of Korea 19 ? Male ? BCa: range 47-78
? Control: range 42-78
? GC-MS Urine 11 ? HC: 8 ? Val, Leu, pyroglutamic acid, Thr, Phe, Asp, glutamic acid, asparagine, alpha-aminoadipic acid, Tyr, and Trp ? Ala, Gly, a-aminobutyric acid, serine, ornithine, Gln, and Lys
Pasikanti et al., 2010 [22] Singapore 75 ? Male and female ? BCa: 67.2±12.3a
? Control: 61.3±12.4a
? GC/TOFMS Urine 24 ? Non-BCa Pts: 51 ? Melibiose, uridine, and Val ? Senecioic acid, 2-butenedioic acid, ribonic acid, 2,5-furandicarboxylic acid, sumiki’s acid, 2-propenoic acid, glycerol, gluconic acid, valerate, fructose, citric acid, and ribitol
Putluri et al., 2011 [24] USA 134 ? Male and female NR ? LC-MS Urine 83 ? HC: 51 ? Val, carnitine, Tyr, creatine, histidine, Leu/Ile, kynurenine, Phe, Lys, serine, thymine, guanine, and uracil ? Histamine and palmitic acid
Gamagedara et al., 2012 [26] USA 23 ? NR NR ? LC-MS Urine 11 ? Non-BCa Pts: 12 ? Tau ? NR
Huang et al, 2011 [25] China 59 ? Male and female ? BCa: mean 56 (range 42-71)
? Control: mean 53 (range 46-67)
? LC-MS Urine 27 ? HC: 32 ? NR ? Carnitine and hippuric acid
Cao et al., 2012 [27] China 110 ? Male ? HC: 67.43±8.75a
? Calculi: 55.04±11.34a
? LBC: 60.26±14.52a
? HBC: 70.27±11.0a
? Post-TURBT: 66.65±9.42a
? H-NMR Serum 37 ? 73
o-
HC: 25
o-
CP: 28
o-
Post-TURBT: 20
? Glucose, acetoacetate, and very low-density lipoprotein ? Ile, Leu, Tyr, Phe, choline, lactate, Gly, and citrate
Huang et al., 2013 [31] China 43 ? Male and female ? BCa: mean 60.5 (range 45-74)
? Control: mean 50.5 (range 26-65)
? LC-MS Urine 19 ? HC: 24 ? Tau ? Carnitine and hippuric acid
Jobu et al., 2012 [32] Japan 16 ? NR ? NR ? GC-MS Urine 9 ? HC: 7 ? Ethylbenzene, nonanoyl chloride, dodecanal, (Z)-2-nonenal, and 5-dimethyl-3(2H)-isoxazolone ? NR
Lin et al., 2012 [28] China 68 ? Male and female ? HC: mean 45 (range 21-68)
? Nephrolithiasis: mean 54; range (31-74)
? BPH: mean 70 (range 65-82)
? BCa: mean 61 (range 45-74)
? LC-MS Serum 20 ? 48
o-
HC: 20
o-
Nephrolithiasis: 18
o-
BPH: 10
? Eicosatrienol, azaprostanoic acid, docosatrienol, retinol, and 14-apo-beta-carotenal ? NR
Tripathi et al., 2013 [35] USA 59 ? Male and female ? HC: 69.4±10.6a (range 51?87)
? BCa:
o-
Ta-T1: 60.1±11.5a (range 33?78)
o-
≥T2: 68.8±11.7a (range 43?87)
? HR-MAS-NMR GC-MS Tissue 33 ? HC: 26 ? Triglycerides, Leu, Ile, Val, lactate, Ala, acetate, Lys, glutamate, glutathione, Gln, aspartate, creatine, choline, phosphocholine, glycerophosphocholine, Tau, Gly, inositol, uridine diphosphate sugars, Phe, and Tyr ? NR
Bansal et al., 2013 [30] India 99 ? Male ? >40 ? H-NMR Serum 67 ? HC: 32 ? Dimethylamine, malonate, lactate, histidine, Val, and Gln ? NR
Pasikanti et al., 2013 [29] Singapore 99 ? Male and female ? BCa: 68.3±10.9a
? Control: 60.5±12.7a
? GC×GC-TOFMS Urine 38 ? Non-BCa Pts: 61 ? Adipic acid, anthranilic acid, coumaric acid derivative, cyclopentane-1, 2-diamine, erythritol, erythro-pentonic acid, ethylmalonic acid, gluconic acid derivative, heptadecanoic acid, hydroxybutyric acid, itaconic acid, lactic acid, melibiose, N-acetylanthranilic acid, p-cresol, pseudouridine, uridine, vanillylmandelic acid, 2,3,4,5-tetrahydroxypentanoic acid-1,4-lactone, 2-aminoisobutyric acid, 2-hydroxymalonic acid, 2-pentadecanol, 3,4-dihydroxyphenyl pyruvate, 3-hydroxysebacic acid, 3-methyladipic acid, and 4-methoxycinnamic acid ? Citric acid, dihydroxyacetone, ethyl tartrate, gluconic acid, glycerol, levulinic acid enol, pinene, ribitol, ribonic acid, sebacic acid, Sumiki’s acid, 2,5-furandicarboxylic acid, 2-butanedioic acid, and 2-hydroxyglutaric acid
Jin et al., 2014 [33] Republic of Korea 259 ? Male and female ? BCa: 65.64±12.65a
? Control: 64.31±9.18a
? HPLC-QTOFMS Urine 138 ? 121
o-
HC: 69
o-
HU: 52
? Succinate, pyruvate, oxoglutarate, carnitine, phosphoenolpyruvate, trimethyllysine, isovalerylcarnitine, octenoylcarnitine, acetyl coenzyme A, carnitine palmitoyltransferase, and carnitine acylcarnitine ? Melatonin, glutarylcarnitine, decanoylcarnitine, and dihydrolipoyl dehydrogenase (pyruvate dehydrogenase complex)
Peng et al., 2014 [34] China and Canada 285 ? Male and female ? BCa: 68±14a
? Control: 61±5a
? LC-MS Urine 135 ? 150
o-
Hernia: 82;
o-
UTI or HU: 68
? 5-hydroxyindoleacetic acid, phosphoethanolamine, and pyroglutamic acid ? Uridine and histamine
Wittmann et al, 2014 [36] USA 440 ? Male and female ? BCa: mean 67.4
? Control: mean 64.2
? UHPLC-MS/MS- GC-MS Urine 95 ? Non-BCa Pts: 345 ? Lactate, acetylcarnitine, palmitoyl sphingomyelin, adipate, Trp, gluconate, Ile, Val, Leu, phosphocholine, choline, aspartate, beta-hydroxypyruvate, and guanine ? 3-hydroxyphenylaceate, fructose, pyridoxate, succinate, xanthurenate, itaconate, 2-methylbutyrylglycine, pyruvic acid, citrate, tyramine, guanidinoacetate, anserine, gamma-aminobutyrate, creatine, adenosine, and ethanolamine
Shen et al., 2015 [37] China 44 ? Male and female ? BCa: 65.14±13.27a
? Control: 53.76 ±19.47a
? UPLC-HRMS Urine 23 ? HC: 21 ? Nicotinuric acid, Asp, Gly, Trp, and trehalose ? Gly, Cys, Ala, Lys, inosinic acid, and ureidosuccinic acid
Zhou et al., 2016 [38] China 140 ? Male and female ? BCa: 66±12.6a
? Control: 65.6±6.8a
? GC-MS-SIM Plasma 92 ? HC: 48 ? Hypotaurine, uridine, malic acid, fumaric acid, creatinine, ribose, glycolic acid, gluconic acid, kynurenine, erythritol, ribonic acid, and serine ? Hippuric acid, hypoxanthine, lactose, xylitol, eicosenoic acid, and glyoxylic acid
Shao et al., 2017 [40] China 122 ? Male and female ? BCa: 68.2±14.5a
? Control: 64.6±13.2a
? UPLCTOF-MS Urine 87 ? Hernia: 65 ? Imidazoleacetic acid ? NR
Tan et al., 2017 [39] China 172 ? Male and female ? NR ? UHPLC-Q-TOFMS Serum 120 ? HC: 52 ? 5-aminoimidazole ribonucleotide, hypoxanthine, inosine, acetyl-N-formyl-5-methoxykynurenamine, Indoleacetic acid, glycocholic acid, phytosphingosine, sphinganine, and linolenyl carnitine ? 3-hydroxyoctanoyl carnitine and 3-hydroxydecanoyl carnitine
Cheng et al, 2018 [42] China 284 ? Male and female ? BCa: 62.2±13.2a
? Control: 59.5±11.2a
? LC-HRMS Urine 167 ? HC: 117 ? Dopamine 4-sulfate, doxazosin, dihydroferulic acid 4-O-glucuronide, ofloxacin, 15-dehydro-prostaglandin E1(1-), 4-(ethoxymethyl) phenol, ovalicin, flunisolide, (Z)-13-hexadecenoic acid, and alpha-ionol O-[arabinosyl-(1->6)-glucoside] ? Aspartyl-histidine, tyrosyl-methionine, 3-hydroxy-carbofuran, 1,2-dehydrosalsolinol, ecabet, gossyvertin, avocadyne 4-acetate, 13-hydroxy-9-methoxy-10-oxo-11-octadecenoic acid, fluoxymesterone, and 1-acetoxy-2-hydroxy-16-heptadecen-4-one
Yumba Mpanga et al., 2018 [41] Poland 80 ? Male and female ? BCa: median 62;
? Control: median 60
? RP-HPLC-QQQ/MS Urine 40 ? HC: 40 ? Trimethyllysine, Tau, citrulline, acetyllysine, glucuronic acid, gluconic acid, N-acetylneuraminic acid, pseudouridine, xanthine, uridine, 7-methylguanine, aconitic acid, and Trp ? 3,7-dimethyluric acid, 2-furoyglycine, 1,7-dimethylxanthine, and hippuric acid
Wei et al., 2019 [44] China 30 ? NR ? NR ? HS-GC-MS Blood 15 ? HC: 15 ? Formaldehyde, acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal ? NR
Jacyna et al, 2019 [43] Poland 48 ? Male ? NR ? HPLC-TOF/MS, GC-QQQ/MS, and HNMR Urine 24 ? HC: 24 ? 2-deoxy-ribonic acid, diacetylspermine, meso-erythritol, Gln, lactic acid, pentanedioic acid, phenylacetylglutamine, propanoic acid, threonic acid, Tyr, uric acid, and uridine ? S-adenosylmethionine, benzenediol, glycolic acid, hippuric acid, and pipecolic acid
Loras et al., 2019 [45] Spain 34 ? Male and female ? NR ? H-NMR Tissue and urine 21 ? Non-BCa Pts: 13 ? Ala, Gln, glutamate, Tau, Pro, Gly, Thr, Phe, Val, Lys, methanol, creanine, choline, glycerol, glycerophosphocholine, phosphocholine, citrate, succinate, hippuric acid, lactic acid, Tau, and sucrose ? Ala, Gln, glutamate, Tau, Pro, Gly, Thr, Phe, Val, Lys, methanol, creanine, choline, glycerol, glycerophosphocholine, phosphocholine, citrate, succinate, hippuric acid, lactic acid, Tau, and sucrose
Lin et al, 2021 [46] China 124 ? Male and female ? BCa: 67.4±13.5a
? Control: 65±12a
? GC-MS Urine 63 ? Hernia: 61 ? Desaminotyrosine, erythritol, d-ribose, ribitol, d-fructose, d-mannose, and d-galactose ? NR
Luczykowski et al, 2021 [47] Poland 48 ? Male and female ? BCa: 65±12a
? Control: 64±10.4a
? LC-MS Urine 24 ? HC: 24 ? 2-acetyl-1-alkyl-sn-glycero-3, phosphocholine, and adenine ? 3-dehydroxycarnitine, 3-methylxanthine, 4-hydroxycinnamic acid, 5-hydroxyindoleacetic acid, benzoic acid, carnosine, epinephrine, hippuric acid, histidine, isoniazid, n-acetyl-Phe, p-aminobenzoic acid, retinol, theophylline, gluconic acid, and indolelactic acid
Pinto et al., 2021 [48] Portugal 109 ? Male and female ? BCa: 68.9±10.6a
? Control: 51±5.2a
? HS-SPME-GC-MS Urine 53 ? Non-BCa Pts: 56 ? 2-methylnonane, 2,4-dimethylheptane, 2,6-dimethylnonane, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,4-trimethylbenzene, and p-cresol ? 2-furaldehyde, 2-methylbutanal, formaldehyde, hexanal, 2-butanone, 4-heptanone, carvone, piperitone, and 1,5-dimethyl-6,8-dioxabicycloctane
Li et al, 2022 [49] China 95 ? Male and female ? BCa: 65.8±3.5a
? Control: 61±4.1a
? LC-MS Urine 57 ? Non-BCa Pts: 38 ? Isoleucyl-Phe, choline, 1-methylhistidine, n-undecanoylglycine, linoleyl carnitine, adenosine-monophosphate, niacinamide, phenylalanyl-asparagine, and Tau ? Mesobilirubinogen, 2-hydroxycaproic acid, urobilin, 6-hydroxyhexanoic acid, cytidine, dihydrotestosterone, histidine, flavin mononucleotide, valyl-serine, 4-acetamidobutanoic acid, (5R)-5-hydroxyhexanoic acid, adenosine, arginine, 1,11-undeanedicarboxylic acid, ubiquinone-2, butenylcarnitine, sebacic acid, and alanyl-tyrosine
Jacyna et al., 2022 [50] Poland 48 ? Male and female ? 69.6±5.6a ? HPLC-TOF/MS, GC-QqQ/MS and H-NMR Urine 24 ? HC: 24 ? Benzenediol, 2-deoxy-ribonic acid, diacetylspermine, meso-erythritol, Gln, hippuric acid, lactic acid, pentanedioic acid, phenylacetylglutamine, pipecolic acid, propanoic acid, threonic acid, Tyr, uric acid, and uridine ? Benzenediol, 2-deoxy-ribonic acid, diacetylspermine, meso-erythritol, Gln, hippuric acid, lactic acid, pentanedioic acid, phenylacetylglutamine, pipecolic acid, propanoic acid, threonic acid, Tyr, uric acid, and uridine
  
  
  
Study Sample type Analytical platform Anaerobic oxidation (glycolysis) Aerobic oxidation (the TCA cycle)
Glucose Fructose Pyruvic acid Lactose Lactic acid Citrate or citric acid Succinate Malic acid Fumaric acid Itaconate
Srivastava et al., 2010 [21] Urine H-NMR
Kim et al., 2010 [23] Urine GC-MS
Pasikanti et al., 2010 [22] Urine GC/TOFMS
Cao et al., 2012 [27] Serum H-NMR
Bansal et al., 2013 [30] Serum H-NMR
Pasikanti et al., 2013 [29] Urine GC×GC-TOFMS
Tripathi et al., 2013 [35] Tissue HR-MAS-NMR GC-MS
Jin et al., 2014 [33] Urine HPLC-QTOFMS
Wittmann et al., 2014 [36] Urine UHPLC-MS/MS GC-MS
Zhou et al., 2016 [38] Plasma GC-MS-SIM
Jacyna et al., 2019 [43] Urine MS and H-NMR
Loras et al., 2019 [45] Urine NMR ↓↑ ↓↑ ↓↑
Jacyna et al., 2022 [50] Urine MS and H-NMR
  
Study Sample type Analytical platform Essential amino acid Non-essential amino acid
Leu Met Lys Val Ile Phe Trp Thr Ser Cys Asp Pro Arg Tyr Asn Glu Gly Ala His Tau Gln
Srivastava et al., 2010 [21] Urine H-NMR
Kim et al., 2010 [23] Urine GC-MS
Pasikanti et al., 2010 [22] Urine GC/TOFMS
Gamagedara et al., 2012 [26] Urine LC-MS
Putluri et al., 2011 [24] Urine LC-MS
Huang et al., 2011 [25] Urine LC-MS
Cao et al., 2012 [27] Serum H-NMR
Bansal et al., 2013 [30] Serum H-NMR
Tripathi et al., 2013 [35] Tissue HR-MAS-NMR GC-MS
Wittmann et al., 2014 [36] Urine UHPLC-MS/MS GC-MS
Shen et al., 2015 [37] Urine UPLC-HRMS
Yumba Mpanga et al., 2018 [41] Urine RP-HPLC-QQQ/MS
Jacyna et al., 2019 [43] Urine MS and H-NMR
Loras et al., 2019 [45] Tissue and urine H-NMR ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓
?uczykowski et al., 2021 [47] Urine LC-MS
Li et al., 2022 [49] Urine LC-MS
Jacyna et al., 2022 [50] Urine MS and H-NMR ↑↓ ↑↓
  
Study Sample type Analytical platform Purine Pyrimidine
Adenine Guanine Cytosine Thymine Uridine Uracil Inosine Hypoxanthine Ribose
Pasikanti et al., 2010 [22] Urine GC/TOFMS
Putluri et al., 2011 [24] Urine LC-MS
Tripathi et al., 2013 [35] Tissue H-NMR, GC-MS
Pasikanti et al., 2013 [29] Urine GC×GC-TOFMS
Peng et al., 2014 [34] Urine LC-MS
Wittmann et al., 2014 [36] Urine UHPLC-MS/MS GC-MS
Zhou et al., 2016 [38] Plasma GC-MS-SIM
Tan et al., 2017 [39] Serum UHPLC-Q-TOFMS
Yumba Mpanga et al., 2018 [41] Urine RP-HPLC-QQQ/MS
Jacyna et al., 2019 [43] Urine MS, H-NMR
Lin et al., 2021 [46] Urine GC-MS
Li et al., 2022 [49] Urine LC-MS
Jacyna et al., 2022 [50] Urine MS, H-NMR ↑↓
  
[1] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68:394e424.
doi: 10.3322/caac.v68.6
[2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017; 67:7e30.
doi: 10.3322/caac.v67.1
[3] Burger M, Catto JWF, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol 2013; 63:234e41.
doi: 10.1016/j.eururo.2012.07.033 pmid: 22877502
[4] Babjuk M, Burger M, Capoun O, Cohen D, Compérat EM, Dominguez Escrig JL, et al. European Association of Urology guidelines on non-muscle-invasive bladder cancer (Ta, T1 and carcinoma in situ). Eur Urol 2020 2022;81:75e94.
[5] Comploj E, Trenti E, Palermo S, Pycha A, Mian C. Urinary cytology in bladder cancer: why is it still relevant? Urologia 2015; 82:203e5.
doi: 10.5301/uro.5000129 pmid: 26219472
[6] Garcia-Perdomo H, Vallejo F, Sanchez A. Metabolic profiling based on nuclear magnetic resonance spectroscopy and mass spectrometry as a tool for clinical application. Urol Sci 2019; 30:144e50.
doi: 10.4103/UROS.UROS_2_19
[7] Issaq HJ, Nativ O, Waybright T, Luke B, Veenstra TD, Issaq EJ, et al. Detection of bladder cancer in human urine by metabolomic profiling using high performance liquid chromatography/mass spectrometry. J Urol 2008; 179:2422e6.
doi: 10.1016/j.juro.2008.01.084 pmid: 18433783
[8] Roux A, Lison D, Junot C, Heilier JF. Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: a review. Clin Biochem 2011; 44:119e35.
doi: 10.1016/j.clinbiochem.2010.08.016 pmid: 20800591
[9] Smolinska A, Blanchet L, Buydens LMC, Wijmenga SS. NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta 2012; 750:82e97.
doi: 10.1016/j.aca.2012.05.049 pmid: 23062430
[10] Gowda GAN, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn 2008; 8:617e33.
doi: 10.1586/14737159.8.5.617 pmid: 18785810
[11] Nicholson J, Lindon J, Holmes E. “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999; 29: 1181e9.
doi: 10.1080/004982599238047 pmid: 10598751
[12] Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R. Metabolomics for laboratory diagnostics. J Pharm Biomed Anal 2015; 113:108e20.
doi: 10.1016/j.jpba.2014.12.017 pmid: 25577715
[13] Sethi S, Hayashi MA, Barbosa BS, Pontes JG, Tasic L, Brietzke E. Metabolomics:from fundamentals to clinical applications. In: Sussulini A, editor. Advances in Experimental Medicine and Biology, vol. 965. New York: Springer; 2017. https://doi.org/10.1007/978-3-319-47656-8.
[14] Emwas AH. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol 2015; 1277:161e93.
[15] Ribbenstedt A, Ziarrusta H, Benskin JP. Development, characterization and comparisons of targeted and non-targeted metabolomics methods. PLoS One 2018; 13:1e18.
[16] Roberts LD, Souza AL, Gerszten RE, Clish CB. Targeted metabolomics. Curr Protoc Mol Biol 2012; Chapter 30: Unit 30. 2.1e24. https://doi.org/10.1002/0471142727.mb3002s98.
[17] Fiehn O. Metabolomics by gas chromatography-mass spectrometry: the combination of targeted and untargeted profiling. Curr Protoc Mol Biol 2016; 114:30e2.
[18] Liberati A, Altman D, Tetzlaff J. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 2009; 151:W65e94. https://doi.org/10.7326/0003-4819-151-4-200908180-00136.
doi: 10.7326/0003-4819-151-4-200908180-00136 pmid: 19622512
[19] Garcia-Perdomo HA, Dávila-Raigoza A, Korkes F. Metabolomics for the diagnosis of bladder cancer. A protocol for a systematic review. 2020. p. 1e4. https://doi.org/10.6084/m9.figshare.13271633.
[20] Whiting PF, Rutjes AWS, Westwood ME, Mallet S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011; 155:529e36.
doi: 10.7326/0003-4819-155-8-201110180-00009 pmid: 22007046
[21] Srivastava S, Roy R, Singh S, Kumar P, Dalela D, Sankhwar SN, et al. Taurineda possible fingerprint biomarker in non-muscle invasive bladder cancer: a pilot study by 1H NMR spectroscopy. Cancer Biomark 2010; 6:11e20.
doi: 10.3233/CBM-2009-0115 pmid: 20164538
[22] Pasikanti KK, Esuvaranathan K, Ho PC, Mahendran R, Kamaraj R, Wu QH, et al. Noninvasive urinary metabonomic diagnosis of human bladder cancer. J Proteome Res 2010; 9: 2988e95.
doi: 10.1021/pr901173v pmid: 20337499
[23] Kim JW, Lee G, Moon SM, Park MJ, Hong SK, Ahn YH, et al. Metabolomic screening and star pattern recognition by urinary amino acid profile analysis from bladder cancer patients. Metabolomics 2010; 6:202e6.
doi: 10.1007/s11306-010-0199-6
[24] Putluri N, Shojaie A, Vasu VT, Vareed SK, Nalluri S, Putluri V, et al. Metabolomic profiling reveals potential markers and bioprocesses altered in bladder cancer progression. Cancer Res 2011; 71:7376e86.
doi: 10.1158/0008-5472.CAN-11-1154 pmid: 21990318
[25] Huang Z, Lin L, Gao Y, Chen Y, Yan X, Xing J, et al. Bladder cancer determination via two urinary metabolites: a biomarker pattern approach. Mol Cell Proteomics 2011; 10: M111.007922. https://doi.org/10.1074/mcp.M111.007922.
[26] Gamagedara S, Shi H, Ma Y. Quantitative determination of taurine and related biomarkers in urine by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2012; 402:763e70.
doi: 10.1007/s00216-011-5491-4 pmid: 22038588
[27] Cao M, Zhao L, Chen H, Xue W, Lin D. NMR-based metabolomic analysis of human bladder cancer. Anal Sci 2012; 28:451e6.
pmid: 22687923
[28] Lin L, Huang Z, Gao Y, Chen Y, Hang W, Xing J, et al. LC-MSbased serum metabolic profiling for genitourinary cancer classification and cancer type-specific biomarker discovery. Proteomics 2012; 12:2238e46.
doi: 10.1002/pmic.201200016 pmid: 22685041
[29] Pasikanti KK, Esuvaranathan K, Hong Y, Ho PC, Mahendran R, Raman Nee Mani L, et al. Urinary metabotyping of bladder cancer using two-dimensional gas chromatography time-offlight mass spectrometry. J Proteome Res 2013; 12:3865e73.
doi: 10.1021/pr4000448 pmid: 23885889
[30] Bansal N, Gupta A, Mitash N, Shakya PS, Mandhani A, Mahdi AA, et al. Low- and high-grade bladder cancer determination via human serum-based metabolomics approach. J Proteome Res 2013; 12:5839e50.
doi: 10.1021/pr400859w pmid: 24219689
[31] Huang Z, Chen Y, Hang W, Gao Y, Lin L, Li DY, et al. Holistic metabonomic profiling of urine affords potential early diagnosis for bladder and kidney cancers. Metabolomics 2013; 9: 119e29.
doi: 10.1007/s11306-012-0433-5
[32] Jobu K, Sun C, Yoshioka S, Yokota J, Onogawa M, Kawada C, et al. Metabolomics study on the biochemical profiles of odor elements in urine of human with bladder cancer. Biol Pharm Bull 2012; 35:639e42.
pmid: 22466574
[33] Jin X, Yun SJ, Jeong P, Kim IY, Kim WJ, Park S. Diagnosis of bladder cancer and prediction of survival by urinary metabolomics. Oncotarget 2014; 5:1635e45.
doi: 10.18632/oncotarget.1744 pmid: 24721970
[34] Peng J, Chen YT, Chen CL, Li L. Development of a universal metabolome-standard method for long-term LC-MS metabolome profiling and its application for bladder cancer urinemetabolite- biomarker discovery. Anal Chem 2014; 86: 6540e7.
doi: 10.1021/ac5011684 pmid: 24877652
[35] Tripathi P, Somashekar BS, Ponnusamy M, Gursky A, Dailey S, Kunju P, et al. HR-MAS NMR tissue metabolomic signatures cross-validated by mass spectrometry distinguish bladder cancer from benign disease. J Proteome Res 2013; 12: 3519e28.
doi: 10.1021/pr4004135 pmid: 23731241
[36] Wittmann BM, Stirdivant SM, Mitchell MW, Wulff JE, McDunn JE, Li Z, et al. Bladder cancer biomarker discovery using global metabolomic profiling of urine. PLoS One 2014; 9: 1e19.
[37] Shen C, Sun Z, Chen D, Su X, Jiang J, Li G, et al. Developing urinary metabolomic signatures as early bladder cancer diagnostic markers. Omi A J Integr Biol 2015; 19:1e11.
[38] Zhou Y, Song R, Zhang Z, Lu X, Zeng Z, Hu C, et al. The development of plasma pseudotargeted GC-MS metabolic profiling and its application in bladder cancer. Anal Bioanal Chem 2016; 408:6741e9.
doi: 10.1007/s00216-016-9797-0 pmid: 27473428
[39] Tan G, Wang H, Yuan J, Qin W, Dong X, Wu H, et al. Three serum metabolite signatures for diagnosing low-grade and high-grade bladder cancer. Sci Rep 2017; 7:1e11.
doi: 10.1038/s41598-016-0028-x
[40] Shao CH, Chen CL, Lin JY, Chen CJ, Fu SH, Chen YT, et al. Metabolite marker discovery for the detection of bladder cancer by comparative metabolomics. Oncotarget 2017; 8: 38802e10.
doi: 10.18632/oncotarget.v8i24
[41] Yumba Mpanga A, Siluk D, Jacyna J, Szerkus O, Wawrzyniak R, Markuszewski M, et al. Targeted metabolomics in bladder cancer: from analytical methods development and validation towards application to clinical samples. Anal Chim Acta 2018; 1037:188e99.
doi: S0003-2670(18)30160-0 pmid: 30292293
[42] Cheng X, Liu X, Liu X, Guo Z, Sun H, Zhang M, et al. Metabolomics of non-muscle invasive bladder cancer: biomarkers for early detection of bladder cancer. Front Oncol 2018; 8:1e11.
doi: 10.3389/fonc.2018.00001
[43] Jacyna J, Wawrzyniak R, Balayssac S, Gilard V, Malet-Martino M, Sawicka A, et al. Urinary metabolomic signature of muscle-invasive bladder cancer: a multiplatform approach. Talanta 2019; 202:572e9.
doi: S0039-9140(19)30523-5 pmid: 31171223
[44] Wei Y, Wang M, Liu H, Niu Y, Wang S, Zhang F, et al. Simultaneous determination of seven endogenous aldehydes in human blood by headspace gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 2019; 1118e1119:85e92.
[45] Loras A, Suárez-Cabrera C, Martínez-Bisbal MC, Quintás G, Paramio JM, Martínez-Má?ez R, et al. Integrative metabolomic and transcriptomic analysis for the study of bladder cancer. Cancers (Basel) 2019;11:686. https://doi.org/10.3390/cancers11050686.
[46] Lin JY, Juo BR, Yeh YH, Fu SH, Chen YT, Chen CL, et al. Putative markers for the detection of early-stage bladder cancer selected by urine metabolomics. BMC Bioinformatics 2021; 22: 305. https://doi.org/10.1186/s12859-021-04235-z.
doi: 10.1186/s12859-021-04235-z
[47] ?uczykowski K, Warmuzińska N, Operacz S, Stryjak I, Bogusiewicz J, Jacyna J, et al. Metabolic evaluation of urine from patients diagnosed with high grade (HG) bladder cancer by SPME-LC-MS method. Molecules 2021;26:2194. https://doi.org/10.3390/molecules26082194.
[48] Pinto J, Carapito ?, Amaro F, Lima AR, Carvalho-Maia C, Martins MC, et al. Discovery of volatile biomarkers for bladder cancer detection and staging through urine metabolomics. Metabolites 2021; 11:199. https://doi.org/10.3390/metabo11040199.
doi: 10.3390/metabo11040199
[49] Li J, Cheng B, Xie H, Zhan C, Li S, Bai P. Bladder cancer biomarker screening based on non-targeted urine metabolomics. Int Urol Nephrol 2022; 54:23e9.
doi: 10.1007/s11255-021-03080-6
[50] Jacyna J, Kordalewska M, Artymowicz M, Markuszewski M, Matuszewski M, Markuszewski MJ. Pre- and post-resection urine metabolic profiles of bladder cancer patients: results of preliminary studies on time series metabolomics analysis. Cancers (Basel) 2022; 14:1210. https://10.3390/cancers14051210.
doi: 10.3390/cancers14051210
[51] Nakrani MN, Wineland RH, Anjum F. Physiology, glucose metabolism. In: StatPearls [Internet]. Treasure Island: Stat- Pearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK560599/.
[52] Zoidis E, Papamikos V. Glucose:metabolism and regulation. In: Caballero B, Finglas PM, Toldrá F, editors. Food science. The Netherlands: Elsevier Inc.; 2016. p.233e8.
[53] Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids 2009; 37:1e17.
doi: 10.1007/s00726-009-0269-0 pmid: 19301095
[54] Moffatt BA, Ashihara H. Purine and pyrimidine nucleotide synthesis and metabolism. Arab B 2002; 1:e0018. https://doi.org/10.1199/tab.0018.
[55] O’Brien P, Siraki A, Shangari N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 2005; 35:609e62.
doi: 10.1080/10408440591002183 pmid: 16417045
[56] Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett 1995;358:1e3.
[57] Ashrafian H, Sounderajah V, Glen R, Ebbels T, Blaise BJ, Kalra D, et al. Metabolomics: the stethoscope for the twentyfirst century. Med Princ Pract 2021; 30:301e10.
doi: 10.1159/000513545
[58] Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 2009; 15: 431e40.
doi: 10.1158/1078-0432.CCR-08-1059 pmid: 19147747
[59] Inglese P, McKenzie JS, Mroz A, Kinross J, Veselkov K, Holmes E, et al. Deep learning and 3D-DESI imaging reveal the hidden metabolic heterogeneity of cancer. Chem Sci 2017; 8: 3500e11.
doi: 10.1039/c6sc03738k pmid: 28507724
[60] Tenori L, Oakman C, Claudino WM, Bernini P, Cappadona S, Nepi S, et al. Exploration of serum metabolomic profiles and outcomes in women with metastatic breast cancer: a pilot study. Mol Oncol 2012; 6:437e44.
doi: 10.1016/j.molonc.2012.05.003 pmid: 22687601
[61] Mauri-Capdevila G, Jove M, Suarez-Luis I, Portero-Otin M, Purroy F. [Metabolomics in ischaemic stroke, new diagnostic and prognostic biomarkers]. Rev Neurol 2013; 57:29e36. [Article in Spanish].
pmid: 23799599
[62] Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest 2013; 123:4309e17.
doi: 10.1172/JCI64801 pmid: 24091325
[63] Kim WT, Yun SJ, Yan C, Jeong P, Kim YH, Lee IS, et al. Metabolic pathway signatures associated with urinary metabolite biomarkers differentiate bladder cancer patients from healthy controls. Yonsei Med J 2016; 57:865e71.
doi: 10.3349/ymj.2016.57.4.865 pmid: 27189278
[64] Cheng Y, Yang X, Deng X, Zhang X, Li P, Tao J, et al. Metabolomics in bladder cancer: a systematic review. Int J Clin Exp Med 2015; 8:11052e63.
pmid: 26379905
[65] Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 2016; 41:211e8.
doi: S0968-0004(15)00241-8 pmid: 26778478
[66] Massari F, Ciccarese C, Santoni M, Iacovelli R, Mazzucchelli R, Piva F, et al. Metabolic phenotype of bladder cancer. Cancer Treat Rev 2016; 45:46e57.
doi: 10.1016/j.ctrv.2016.03.005 pmid: 26975021
[67] Jin L, Alesi GN, Kang S. Glutaminolysis as a target for cancer therapy. Oncogene 2016; 35:3619e25.
doi: 10.1038/onc.2015.447 pmid: 26592449
[68] Chung K, Gadupudi GS. Possible roles of excess tryptophan metabolites in cancer. Environ Mol Mutagen 2011; 52:81e104.
doi: 10.1002/em.v52.2
[69] Lee SH, Mahendran R, Tham SM, Thamboo TP, Chionh BJ, Lim YX, et al. Tryptophan-kynurenine ratio as a biomarker of bladder cancer. BJU Int 2021; 127:445e53.
doi: 10.1111/bju.v127.4
[70] Pilotte L, Larrieu P, Stroobant V, Colau D, Dolusic E, Frédérick R, et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A 2012;109:2497e502.
[71] Long J, Zhang CJ, Zhu N, Du K, Yin YF, Tan X, et al. Lipid metabolism and carcinogenesis, cancer development. Am J Cancer Res 2018; 8:778e91.
pmid: 29888102
[72] Wang G, Cao R, Ge Q, Xiao Y, Wang X. The role of lipids metabolism in bladder cancer. Cancer Res 2017; 77:2511. https://doi.org/10.1158/1538-7445.AM2017-2511.
doi: 10.1158/1538-7445.AM2017-2511
[73] Serrano M, Gallego M, Silva M. Analysis of endogenous aldehydes in human urine by static headspace gas chromatographymass spectrometry. J Chromatogr A 2016; 1437:241e6.
doi: S0021-9673(16)30026-7 pmid: 26879451
[74] Crowder SL, Playdon MC, Gudenkauf LM, Ose J, Gigic B, Greathouse L, et al. A molecular approach to understanding the role of diet in cancer-related fatigue: challenges and future opportunities. Nutrients 2022; 14: 1e14.
doi: 10.3390/nu14010001
[75] Wang Y, Hodge RA, Stevens VL, Hartman TJ, McCullough ML. Identification and reproducibility of urinary metabolomic biomarkers of habitual food intake in a cross-sectional analysis of the cancer prevention study-3 diet assessment substudy. Metabolites 2021; 11:248. https://doi.org/10.3390/metabo11040248.
doi: 10.3390/metabo11040248
No related articles found!
[1] Guohua Zeng,Wei Zhu. Urolithiasis: From pathogenesis to management (part one)[J]. Asian Journal of Urology, 2023, 10(3): 213 -214 .
[2] Keisuke Funajima,Sei Naito,Takanobu Kabasawa,Hayato Nishida,Tomoyuki Kato,Mitsuru Futakuchi,Norihiko Tsuchiya. A durable complete response resulting from treatment with nivolumab plus ipilimumab for metastatic collecting duct carcinoma of the kidney[J]. Asian Journal of Urology, 2023, 10(3): 376 -378 .
[3] Riccardo Autorino, Senthil Nathan. Robotic surgery in urology: Recent advances[J]. Asian Journal of Urology, 2023, 10(4): 385 -387 .
[4] Panagiotis Kallidonis, Angelis Peteinaris, Gernot Ortner, Kostantinos Pagonis, Costantinos Adamou, Athanasios Vagionis, Evangelos Liatsikos, Bhaskar Somani, Theodoros Tokas. Transurethral resection of bladder tumor: A systematic review of simulator-based training courses and curricula[J]. Asian Journal of Urology, 2024, 11(1): 1 -9 .
[5] Andrew Morton, Arsalan Tariq, Nigel Dunglison, Rachel Esler, Matthew J. Roberts. Etiology and management of urethral calculi: A systematic review of contemporary series[J]. Asian Journal of Urology, 2024, 11(1): 10 -18 .
[6] Michele Marchioni, Giulia Primiceri, Alessandro Veccia, Marta Di Nicola, Umberto Carbonara, Fabio Crocerossa, Ugo Falagario, Ambra Rizzoli, Riccardo Autorino, Luigi Schips. Transurethral prostate surgery in prostate cancer patients: A population-based comparative analysis of complication and mortality rates[J]. Asian Journal of Urology, 2024, 11(1): 48 -54 .
[7] Nikolaos Kostakopoulos, Christos Masaoutis, Vasileios Argyropoulos, Varvara Pantelaion, Panagiotis Theodoropoulos, Panagiotis Kouroupakis, Athanasios Kostakopoulos. Primary unifocal penile follicular center non-Hodgkin lymphoma: Report of a rare case and review of the literature[J]. Asian Journal of Urology, 2024, 11(1): 134 -136 .
[8] Jonathan Noël, Daniel Stirt, Marcio Covas Moschovas, Sunil Reddy, Abdel Rahman Jaber, Marco Sandri, Seetharam Bhat, Travis Rogers, Subuhee Ahmed, Anya Mascarenhas, Ela Patel, Vipul Patel. Oncologic outcomes with and without amniotic membranes in robotic-assisted radical prostatectomy: A propensity score matched analysis[J]. Asian Journal of Urology, 2024, 11(1): 19 -25 .
[9] Awad Elsid Osman, Sahar Alharbi, Atif Ali Ahmed, Asim Ali Elbagir. Single nucleotide polymorphism within chromosome 8q24 is associated with prostate cancer development in Saudi Arabia[J]. Asian Journal of Urology, 2024, 11(1): 26 -32 .
[10] Anthony Franklin, Troy Gianduzzo, Boon Kua, David Wong, Louise McEwan, James Walters, Rachel Esler, Matthew J. Roberts, Geoff Coughlin, John W. Yaxley. The risk of prostate cancer on incidental finding of an avid prostate uptake on 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography for non-prostate cancer-related pathology: A single centre retrospective study[J]. Asian Journal of Urology, 2024, 11(1): 33 -41 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed