Monogenic features of urolithiasis: A comprehensive review
Kyo Chul Kooa,Abdulghafour Halawanib,Victor K.F. Wongc,Dirk Langec,Ben H. Chewc*()
aDepartment of Urology, Yonsei University College of Medicine, Seoul, Republic of Korea bDepartment of Urology, King Abdulaziz University, Jeddah, Saudi Arabia cDepartment of Urological Sciences, University of British Columbia, Stone Centre at Vancouver General Hospital, Vancouver, British Columbia, Canada
Objective: Urolithiasis formation has been attributed to environmental and dietary factors. However, evidence is accumulating that genetic background can contribute to urolithiasis formation. Advancements in the identification of monogenic causes using high-throughput sequencing technologies have shown that urolithiasis has a strong heritable component.
Methods: This review describes monogenic factors implicated in a genetic predisposition to urolithiasis. Peer-reviewed journals were evaluated by a PubMed search until July 2023 to summarize disorders associated with monogenic traits, and discuss clinical implications of identification of patients genetically susceptible to urolithiasis formation.
Results: Given that more than 80% of urolithiases cases are associated with calcium accumulation, studies have focused mainly on monogenetic contributors to hypercalciuric urolithiases, leading to the identification of receptors, channels, and transporters involved in the regulation of calcium renal tubular reabsorption. Nevertheless, available candidate genes and linkage methods have a low resolution for evaluation of the effects of genetic components versus those of environmental, dietary, and hormonal factors, and genotypes remain undetermined in the majority of urolithiasis formers.
Conclusion: The pathophysiology underlying urolithiasis formation is complex and multifactorial, but evidence strongly suggests the existence of numerous monogenic causes of urolithiasis in humans.
. [J]. Asian Journal of Urology, 2024, 11(2): 169-179.
Kyo Chul Koo, Abdulghafour Halawani, Victor K.F. Wong, Dirk Lange, Ben H. Chew. Monogenic features of urolithiasis: A comprehensive review. Asian Journal of Urology, 2024, 11(2): 169-179.
? Myopathy, psychomotor deficit, growth delay, seizure, and hypotonia
Adenine phosphoribosyltransferase deficiency
? APRT
AR
? Crystalluria and progressive CKD
[1]
Howles SA, Thakker RV. Genetics of kidney stone disease. Nat Rev Urol 2020; 17:407e21.
doi: 10.1038/s41585-020-0332-x
pmid: 32533118
[2]
Curhan GC, Willett WC, Rimm EB, Stampfer MJ. Family history and risk of kidney stones. J Am Soc Nephrol 1997; 8: 1568e73.
[3]
Ware EB, Smith JA, Zhao W, Ganesvoort RT, Curhan GC, Pollak M, et al. Genome-wide association study of 24-hour urinary excretion of calcium, magnesium, and uric acid. Mayo Clin Proc Innov Qual Outcomes 2019; 3:448e60.
[4]
Resnick M, Pridgen DB, Goodman HO. Genetic predisposition to formation of calcium oxalate renal calculi. N Engl J Med 1968; 278:1313e8.
[5]
McGeown MG. Heredity in renal stone disease. Clin Sci 1960; 19:465e71.
pmid: 13773937
[6]
Rumsby G. Genetic defects underlying renal stone disease. Int J Surg 2016; 36:590e5.
doi: S1743-9191(16)31024-X
pmid: 27838384
[7]
Sayer JA. Progress in understanding the genetics of calciumcontaining nephrolithiasis. J Am Soc Nephrol 2017; 28:748e59.
doi: 10.1681/ASN.2016050576
pmid: 27932479
[8]
Kim JK, Song SH, Jung G, Song B, Hong SK. Possibilities and limitations of using low biomass samples for urologic disease and microbiome research. Prostate Int 2022; 10:169e80.
doi: 10.1016/j.prnil.2022.10.001
pmid: 36570648
[9]
Ketha H, Singh RJ, Grebe SK, Bergstralh EJ, Rule AD, Lieske JC, et al. Altered calcium and vitamin D homeostasis in first-time calcium kidney stone-formers. PLoS One 2015; 10:e0137350. https://doi.org/10.1371/journal.pone.0137350.
doi: 10.1371/journal.pone.0137350
[10]
Wjst M, Altmüller J, Braig C, Bahnweg M, André E. A genomewide linkage scan for 25-OH-D3 and 1,25-(OH)2-D3 serum levels in asthma families. J Steroid Biochem Mol Biol 2007; 103: 799e802.
[11]
van Dongen J, Willemsen G, Chen WM, de Geus EJ, Boomsma DI. Heritability of metabolic syndrome traits in a large population-based sample. J Lipid Res 2013; 54:2914e23.
doi: 10.1194/jlr.P041673
pmid: 23918046
[12]
Vezzoli G, Soldati L, Gambaro G. Update on primary hypercalciuria from a genetic perspective. J Urol 2008; 179: 1676e82.
doi: 10.1016/j.juro.2008.01.011
pmid: 18343451
Moe OW, Bonny O. Genetic hypercalciuria. J Am Soc Nephrol 2005; 16:729e45.
pmid: 15689405
[15]
Butani L, Kalia A. Idiopathic hypercalciuria in childrendhow valid are the existing diagnostic criteria? Pediatr Nephrol 2004; 19:577e82.
doi: 10.1007/s00467-004-1470-8
[16]
Coe FL, Parks JH, Moore ES. Familial idiopathic hypercalciuria. N Engl J Med 1979; 300:337e40.
doi: 10.1056/NEJM197902153000703
[17]
Tessier J, Petrucci M, Trouvé ML, Valiquette L, Guay G, Ouimet D, et al. A family-based study of metabolic phenotypes in calcium urolithiasis. Kidney Int 2001; 60:1141e7.
pmid: 11532110
[18]
Lieske JC, Turner ST, Edeh SN, Smith JA, Kardia SL. Heritability of urinary traits that contribute to nephrolithiasis. Clin J Am Soc Nephrol 2014; 9:943e50.
doi: 10.2215/CJN.08210813
[19]
Monga M, Macias B, Groppo E, Hargens A. Genetic heritability of urinary stone risk in identical twins. J Urol 2006; 175: 2125e8.
doi: 10.1016/S0022-5347(06)00272-2
pmid: 16697817
[20]
Nicar MJ, Skurla C, Sakhaee K, Pak CY. Low urinary citrate excretion in nephrolithiasis. Urology 1983; 21:8e14.
pmid: 6823713
[21]
Zuckerman JM, Assimos DG. Hypocitraturia: pathophysiology and medical management. Rev Urol 2009; 11:134e44.
pmid: 19918339
[22]
Lieske JC, Turner ST, Edeh SN, Ware EB, Kardia SL, Smith JA. Heritability of dietary traits that contribute to nephrolithiasis in a cohort of adult sibships. J Nephrol 2016; 29: 45e51.
[23]
Lieske JC, Wang X. Heritable traits that contribute to nephrolithiasis. Urolithiasis 2019; 47:5e10.
doi: 10.1007/s00240-018-1095-1
pmid: 30460525
[24]
Singh P, Harris PC, Sas DJ, Lieske JC. The genetics of kidney stone disease and nephrocalcinosis. Nat Rev Nephrol 2022; 18:224e40.
doi: 10.1038/s41581-021-00513-4
[25]
van den Berg L, Henneman P, Willems van Dijk K, Delemarrevan de Waal HA, Oostra BA, van Duijn CM, et al. Heritability of dietary food intake patterns. Acta Diabetol 2013; 50: 721e6.
doi: 10.1007/s00592-012-0387-0
pmid: 22415036
[26]
Martin LJ, Lee SY, Couch SC, Morrison J, Woo JG. Shared genetic contributions of fruit and vegetable consumption with BMI in families 20 y after sharing a household. Am J Clin Nutr 2011; 94:1138e43.
doi: 10.3945/ajcn.111.015461
pmid: 21831991
[27]
Halbritter J, Baum M, Hynes AM, Rice SJ, Thwaites DT, Gucev ZS, et al. Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J Am Soc Nephrol 2015; 26:543e51.
doi: 10.1681/ASN.2014040388
pmid: 25296721
[28]
Braun DA, Lawson JA, Gee HY, Halbritter J, Shril S, Tan W, et al. Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis. Clin J Am Soc Nephrol 2016; 11:664e72.
doi: 10.2215/CJN.07540715
[29]
Daga A, Majmundar AJ, Braun DA, Gee HY, Lawson JA, Shril S, et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 2018; 93:204e13.
doi: 10.1016/j.kint.2017.06.025
Wolf MTF, Zalewski I, Martin FC, Ruf R, Müller D, Hennies HC, et al. Mapping a new suggestive gene locus for autosomal dominant nephrolithiasis to chromosome 9q33.2eq34.2 by total genome search for linkage. Nephrol Dial Transplant 2005;20:909e14.
[32]
Scott P, Ouimet D, Valiquette L, Guay G, Proulx Y, Trouvé ML, et al. Suggestive evidence for a susceptibility gene near the vitamin D receptor locus in idiopathic calcium stone formation. J Am Soc Nephrol 1999; 10:1007e13.
doi: 10.1681/ASN.V1051007
pmid: 10232686
[33]
Mossetti G, Vuotto P, Rendina D, Numis FG, Viceconti R, Giordano F, et al. Association between vitamin D receptor gene polymorphisms and tubular citrate handling in calcium nephrolithiasis. J Intern Med 2003; 253:194e200.
pmid: 12542560
[34]
Hannan FM, Nesbit MA, Zhang C, Cranston T, Curley AJ, Harding B, et al. Identification of 70 calcium-sensing receptor mutations in hyper- and hypo-calcaemic patients: evidence for clustering of extracellular domain mutations at calcium-binding sites. Hum Mol Genet 2012; 21: 2768e78.
doi: 10.1093/hmg/dds105
pmid: 22422767
[35]
Vargas-Poussou R, Huang C, Hulin P, Houillier P, Jeunema?tre X, Paillard M, et al. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol 2002;13:2259e66.
[36]
Hannan FM, Babinsky VN, Thakker RV. Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis. J Mol Endocrinol 2016; 57:R127e42. https://doi.org/10.1530/JME-16-0124.
doi: 10.1530/JME-16-0124
[37]
Pearce SH, Williamson C, Kifor O, Bai M, Coulthard MG, Davies M, et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med 1996; 335:1115e22.
doi: 10.1056/NEJM199610103351505
[38]
Yamamoto M, Akatsu T, Nagase T, Ogata E. Comparison of hypocalcemic hypercalciuria between patients with idiopathic hypoparathyroidism and those with gain-of-function mutations in the calcium-sensing receptor: is it possible to differentiate the two disorders? J Clin Endocrinol Metab 2000; 85:4583e91.
doi: 10.1210/jcem.85.12.7035
[39]
Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, et al. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet 2002; 360:692e4.
doi: 10.1016/S0140-6736(02)09842-2
pmid: 12241879
[40]
Oliveira B, Kleta R, Bockenhauer D, Walsh SB. Genetic, pathophysiological, and clinical aspects of nephrocalcinosis. Am J Physiol Ren Physiol 2016; 311:F1243e52. https://doi.org/10.1152/ajprenal.00211.2016.
doi: 10.1152/ajprenal.00211.2016
[41]
Gollasch B, Anistan YM, Canaan-Kühl S, Gollasch M. Lateonset Bartter syndrome type II. Clin Kidney J 2017; 10: 594e9.
doi: 10.1093/ckj/sfx033
[42]
Huang L, Luiken GP, van Riemsdijk IC, Petrij F, Zandbergen AA, Dees A. Nephrocalcinosis as adult presentation of Bartter syndrome type II. Neth J Med 2014; 72: 91e3.
pmid: 24659592
[43]
Brochard K, Boyer O, Blanchard A, Loirat C, Niaudet P, Macher MA, et al. Phenotype-genotype correlation in antenatal and neonatal variants of Bartter syndrome. Nephrol Dial Transplant 2009; 24:1455e64.
doi: 10.1093/ndt/gfn689
[44]
Jeck N, Reinalter SC, Henne T, Marg W, Mallmann R, Pasel K, et al. Hypokalemic salt-losing tubulopathy with chronic renal failure and sensorineural deafness. Pediatrics 2001; 108:E5. https://doi.org/10.1542/peds.108.1.e5.
doi: 10.1542/peds.108.1.e5
pmid: 11433084
[45]
Janssen AG, Scholl U, Domeyer C, Nothmann D, Leinenweber A, Fahlke C. Disease-causing dysfunctions of barttin in Bartter syndrome type IV. J Am Soc Nephrol 2009; 20:145e53.
doi: 10.1681/ASN.2008010102
pmid: 18776122
[46]
Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, et al. Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 2004; 350:1314e9.
doi: 10.1056/NEJMoa032843
[47]
Laghmani K, Beck BB, Yang SS, Seaayfan E, Wenzel A, Reusch B, et al. Polyhydramnios, transient antenatal Bartter’s syndrome, and MAGED2 mutations. N Engl J Med 2016; 374:1853e63.
doi: 10.1056/NEJMoa1507629
[48]
Seyberth HW, Schlingmann KP. Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects. Pediatr Nephrol 2011; 26:1789e802.
doi: 10.1007/s00467-011-1871-4
pmid: 21503667
[49]
Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, et al. A common molecular basis for three inherited kidney stone diseases. Nature 1996; 379:445e9.
doi: 10.1038/379445a0
[50]
Hoopes RR Jr, Shrimpton AE, Knohl SJ, Hueber P, Hoppe B, Matyus J, et al. Dent disease with mutations in OCRL1. Am J Hum Genet 2005; 76:260e7.
pmid: 15627218
[51]
De Matteis MA, Staiano L, Emma F, Devuyst O. The 5- phosphatase OCRL in Lowe syndrome and Dent disease 2. Nat Rev Nephrol 2017; 13:455e70.
doi: 10.1038/nrneph.2017.83
[52]
Ehlayel AM, Copelovitch L. Update on dent disease. Pediatr Clin 2019; 66:169e78.
Blanchard A, Curis E, Guyon-Roger T, Kahila D, Treard C, Baudouin V, et al. Observations of a large Dent disease cohort. Kidney Int 2016; 90:430e9.
doi: S0085-2538(16)30196-X
pmid: 27342959
[56]
Gorvin CM, Wilmer MJ, Piret SE, Harding B, van den Heuvel LP, Wrong O, et al. Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients. Proc Natl Acad Sci U S A 2013; 110:7014e9.
doi: 10.1073/pnas.1302063110
[57]
Mehta ZB, Pietka G, Lowe M. The cellular and physiological functions of the Lowe syndrome protein OCRL1. Traffic 2014; 15:471e87.
doi: 10.1111/tra.12160
pmid: 24499450
[58]
Levin-Iaina N, Dinour D. Renal disease with OCRL1 mutations: Dent-2 or Lowe syndrome? J Pediatr Genet 2012; 1:3e5.
doi: 10.3233/PGE-2012-002
pmid: 27625794
[59]
Blanchard A, Vargas-Poussou R, Peyrard S, Mogenet A, Baudouin V, Boudailliez B, et al. Effect of hydrochlorothiazide on urinary calcium excretion in Dent disease: an uncontrolled trial. Am J Kidney Dis 2008; 52:1084e95.
doi: 10.1053/j.ajkd.2008.08.021
pmid: 18976849
[60]
Dasgupta D, Wee MJ, Reyes M, Li Y, Simm PJ, Sharma A, et al. Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J Am Soc Nephrol 2014; 25: 2366e75.
doi: 10.1681/ASN.2013101085
pmid: 24700880
[61]
Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M, Kranz B, et al. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol 2016; 27: 604e14.
doi: 10.1681/ASN.2014101025
pmid: 26047794
[62]
Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflügers Archiv 2019; 471: 149e63.
doi: 10.1007/s00424-018-2184-2
[63]
Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 2006; 79:949e57.
doi: 10.1086/508617
pmid: 17033971
[64]
Müller D, Kausalya PJ, Claverie-Martin F, Meij IC, Eggert P, Garcia-Nieto V, et al. A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO-1 and results in lysosomal mistargeting. Am J Hum Genet 2003;73: 1293e301.
[65]
Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2t resorption. Science 1999;285: 103e6.
[66]
Claverie-Martin F. Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis: clinical and molecular characteristics. Clin Kidney J 2015; 8:656e64.
doi: 10.1093/ckj/sfv081
pmid: 26613020
[67]
Yamaguti PM, Neves FA, Hotton D, Bardet C, de La Dure- Molla M, Castro LC, et al. Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by CLDN19 gene mutations. J Med Genet 2017; 54: 26e37.
doi: 10.1136/jmedgenet-2016-103956
pmid: 27530400
[68]
Weber S, Schneider L, Peters M, Misselwitz J, R?nnefarth G, B?swald M, et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 2001;12: 1872e81.
[69]
Godron A, Harambat J, Boccio V, Mensire A, May A, Rigothier C, et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: phenotype-genotype correlation and outcome in 32 patients with CLDN16 or CLDN19 mutations. Clin J Am Soc Nephrol 2012; 7:801e9.
doi: 10.2215/CJN.12841211
Watanabe T. Improving outcomes for patients with distal renal tubular acidosis: recent advances and challenges ahead. Pediatr Health Med Therapeut 2018; 9:181e90.
doi: 10.2147/PHMT
[72]
Rungroj N, Nettuwakul C, Sawasdee N, Sangnual S, Deejai N, Misgar RA, et al. Distal renal tubular acidosis caused by tryptophan-aspartate repeat domain 72 (WDR72) mutations. Clin Genet 2018; 94:409e18.
doi: 10.1111/cge.13418
pmid: 30028003
[73]
Jobst-Schwan T, Kl?mbt V, Tarsio M, Heneghan JF, Majmundar AJ, Shril S, et al. Whole exome sequencing identified ATP6V1C2 as a novel candidate gene for recessive distal renal tubular acidosis. Kidney Int 2020;97: 567e79.
[74]
Karet FE, Finberg KE, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, et al. Localization of a gene for autosomal recessive distal renal tubular acidosis with normal hearing (rdRTA2) to 7q33-34. Am J Hum Genet 1999; 65:1656e65.
pmid: 10577919
[75]
Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, et al. Mutations in the gene encoding B1 subunit of Ht-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 1999;21: 84e90.
[76]
Vargas-Poussou R, Houillier P, Le Pottier N, Strompf L, Loirat C, Baudouin V, et al. Genetic investigation of autosomal recessive distal renal tubular acidosis: evidence for early sensorineural hearing loss associated with mutations in the ATP6V0A4 gene. J Am Soc Nephrol 2006; 17: 1437e43.
doi: 10.1681/ASN.2005121305
pmid: 16611712
[77]
Besouw MTP, Bienias M, Walsh P, Kleta R, Van’t Hoff WG, Ashton E, et al. Clinical and molecular aspects of distal renal tubular acidosis in children. Pediatr Nephrol 2017; 32: 987e96.
doi: 10.1007/s00467-016-3573-4
pmid: 28188436
[78]
Agroyannis B, Koutsikos D, Tzanatos-Exarchou H, Yatzidis H. Erythrocytosis in type I renal tubular acidosis with nephrocalcinosis. Nephrol Dial Transplant 1992; 7:365e6.
doi: 10.1093/oxfordjournals.ndt.a092145
[79]
Enerb?ck S, Nilsson D, Edwards N, Heglind M, Alkanderi S, Ashton E, et al. Acidosis and deafness in patients with recessive mutations in FOXI1. J Am Soc Nephrol 2018;29: 1041e8.
[80]
Park E, Cho MH, Hyun HS, Shin JI, Lee JH, Park YS, et al. Genotype-phenotype analysis in pediatric patients with distal renal tubular acidosis. Kidney Blood Press Res 2018; 43: 513e21.
[81]
Hopp K, Cogal AG, Bergstralh EJ, Seide BM, Olson JB, Meek AM, et al. Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. J Am Soc Nephrol 2015; 26:2559e70.
doi: 10.1681/ASN.2014070698
pmid: 25644115
Danpure CJ. Molecular etiology of primary hyperoxaluria type 1: new directions for treatment. Am J Nephrol 2005; 25: 303e10.
pmid: 15961951
[84]
Fargue S, Lewin J, Rumsby G, Danpure CJ. Four of the most common mutations in primary hyperoxaluria type 1 unmask the cryptic mitochondrial targeting sequence of alanine: glyoxylate aminotransferase encoded by the polymorphic minor allele. J Biol Chem 2013; 288:2475e84.
doi: 10.1074/jbc.M112.432617
pmid: 23229545
[85]
Beck BB, Hoyer-Kuhn H, G?bel H, Habbig S, Hoppe B. Hyperoxaluria and systemic oxalosis: an update on current therapy and future directions. Expet Opin Invest Drugs 2013; 22:117e29.
[86]
Monico CG, Olson JB, Milliner DS. Implications of genotype and enzyme phenotype in pyridoxine response of patients with type I primary hyperoxaluria. Am J Nephrol 2005; 25: 183e8.
doi: 10.1159/000085411
pmid: 15849466
[87]
Singh P, Chebib FT, Cogal AG, Gavrilov DK, Harris PC, Lieske JC. Pyridoxine responsiveness in a type 1 primary hyperoxaluria patient with a rare (atypical) AGXT gene mutation. Kidney Int Rep 2020; 5:955e8.
[88]
Dhondup T, Lorenz EC, Milliner DS, Lieske JC. Combined liver-kidney transplantation for primary hyperoxaluria type 2:a case report. Am J Transplant 2018; 18:253e7.
[89]
Lam CW, Yuen YP, Lai CK, Tong SF, Lau LK, Tong KL, et al. Novel mutation in the GRHPR gene in a Chinese patient with primary hyperoxaluria type 2 requiring renal transplantation from a living related donor. Am J Kidney Dis 2001; 38: 1307e10.
pmid: 11728965
[90]
Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet 1999; 8:2063e9.
pmid: 10484776
[91]
Cochat P, Hulton SA, Acquaviva C, Danpure CJ, Daudon M, De Marchi M, et al. Primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant 2012; 27:1729e36.
doi: 10.1093/ndt/gfs078
[92]
Davidson Peiris E, Wusirika R. A case report of compound heterozygous CYP24A1 mutations leading to nephrolithiasis successfully treated with ketoconazole. Case Rep Nephrol Dial 2017; 7:167e71.
[93]
Hureaux M, Molin A, Jay N, Saliou AH, Spaggiari E, Salomon R, et al. Prenatal hyperechogenic kidneys in three cases of infantile hypercalcemia associated with SLC34A1 mutations. Pediatr Nephrol 2018; 33:1723e9.
doi: 10.1007/s00467-018-3998-z
pmid: 29959532
[94]
Knoll T, Z?llner A, Wendt-Nordahl G, Michel MS, Alken P. Cystinuria in childhood and adolescence: recommendations for diagnosis, treatment, and follow-up. Pediatr Nephrol 2005; 20:19e24.
pmid: 15602663
Calonge MJ, Gasparini P, Chillarón J, Chillón M, Gallucci M, Rousaud F, et al. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet 1994;6: 420e5.
[97]
Feliubadaló L, Font M, Purroy J, Rousaud F, Estivill X, Nunes V, et al. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,tAT) of rBAT. Nat Genet 1999;23:52e7.
[98]
Thomas K, Wong K, Withington J, Bultitude M, Doherty A. Cystinuria-a urologist’s perspective. Nat Rev Urol 2014; 11: 270e7.
doi: 10.1038/nrurol.2014.51
pmid: 24662732
Zoref E, De Vries A, Sperling O. Mutant feedback-resistant phosphoribosylpyrophosphate synthetase associated with purine overproduction and gout. Phosphoribosylpyrophosphate and purine metabolism in cultured fibroblasts. J Clin Invest 1975; 56:1093e9.
[101]
Roessler BJ, Nosal JM, Smith PR, Heidler SA, Palella TD, Switzer RL, et al. Human X-linked phosphoribosylpyrophosphate synthetase superactivity is associated with distinct point mutations in the PRPS1 gene. J Biol Chem 1993; 268:26476e81.
pmid: 8253776
[102]
Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet 2008; 83: 744e51.
doi: 10.1016/j.ajhg.2008.11.001
pmid: 19026395
[103]
Ng N, Kaur A, Shenoy M. Recurrent kidney stones in a child with Lesch-Nyhan syndrome: answers. Pediatr Nephrol 2019; 34:425e7.
doi: 10.1007/s00467-018-4037-9
pmid: 30112657
[104]
Bhasin B, Stiburkova B, De Castro-Pretelt M, Beck N, Bodurtha JN, Atta MG. Hereditary renal hypouricemia: a new role for allopurinol? Am J Med 2014; 127:e3e4. https://doi.org/10.1016/j.amjmed.2013.08.025.
[105]
Ichida K, Matsumura T, Sakuma R, Hosoya T, Nishino T. Mutation of human molybdenum cofactor sulfurase gene is responsible for classical xanthinuria type II. Biochem Biophys Res Commun 2001; 282:1194e200.
doi: 10.1006/bbrc.2001.4719
[106]
Ichida K, Amaya Y, Kamatani N, Nishino T, Hosoya T, Sakai O. Identification of two mutations in human xanthine dehydrogenase gene responsible for classical type I xanthinuria. J Clin Invest 1997; 99:2391e7.
doi: 10.1172/JCI119421
pmid: 9153281
[107]
Zaki MS, Selim L, El-Bassyouni HT, Issa MY, Mahmoud I, Ismail S, et al. Molybdenum cofactor and isolated sulphite oxidase deficiencies: clinical and molecular spectrum among Egyptian patients. Eur J Paediatr Neurol 2016; 20:714e22.
doi: 10.1016/j.ejpn.2016.05.011
[108]
Reiss J, Hahnewald R. Molybdenum cofactor deficiency: mutations in GPHN, MOCS1, and MOCS2. Hum Mutat 2011; 32: 10e8.
doi: 10.1002/humu.21390
pmid: 21031595
[109]
Bollée G, Dollinger C, Boutaud L, Guillemot D, Bensman A, Harambat J, et al. Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency. J Am Soc Nephrol 2010; 21:679e88.
doi: 10.1681/ASN.2009080808
pmid: 20150536
Edvardsson VO, Runolfsdottir HL, Thorsteinsdottir UA, Sch Agustsdottir IM, Oddsdottir GS, Eiriksson F, et al. Comparison of the effect of allopurinol and febuxostat on urinary 2,8-dihydroxyadenine excretion in patients with Adenine phosphoribosyltransferase deficiency (APRTd): a clinical trial. Eur J Intern Med 2018; 48:75e9.
doi: S0953-6205(17)30415-6
pmid: 29241594
[112]
Langman CB. A rational approach to the use of sophisticated genetic analyses of pediatric stone disease. Kidney Int 2018; 93:15e8.
doi: S0085-2538(17)30660-9
pmid: 29291816