Please wait a minute...
Search Asian J Urol Advanced Search
Share 
Asian Journal of Urology, 2018, 5(2): 57-68    doi: 10.1016/j.ajur.2017.06.010
  本期目录 | 过刊浏览 | 高级检索 |
Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China
Zou Qingsong,Fu Qiang()
Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
下载:  HTML  PDF (723KB) 
输出:  BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract: 

Several urinary tract pathologic conditions, such as strictures, cancer, and obliterations, require reconstructive plastic surgery. Reconstruction of the urinary tract is an intractable task for urologists due to insufficient autologous tissue. Limitations of autologous tissue application prompted urologists to investigate ideal substitutes. Tissue engineering is a new direction in these cases. Advances in tissue engineering over the last 2 decades may offer alternative approaches for the urinary tract reconstruction. The main components of tissue engineering include biomaterials and cells. Biomaterials can be used with or without cultured cells. This paper focuses on cell sources, biomaterials, and existing methods of tissue engineering for urinary tract reconstruction in China. The paper also details challenges and perspectives involved in urinary tract reconstruction.

Key words:  Tissue engineering    Urinary tract    Reconstruction and repair    China
收稿日期:  2016-09-20      修回日期:  2017-03-10      接受日期:  2017-04-25      出版日期:  2018-04-10      发布日期:  2018-06-09      整期出版日期:  2018-04-10
引用本文:    
. [J]. Asian Journal of Urology, 2018, 5(2): 57-68.
Zou Qingsong,Fu Qiang. Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China. Asian Journal of Urology, 2018, 5(2): 57-68.
链接本文:  
http://www.ajurology.com/CN/10.1016/j.ajur.2017.06.010  或          http://www.ajurology.com/CN/Y2018/V5/I2/57
  
  
Research Animals for modeling Cell types Biomaterial/artificial tissue Kidney damage Duration of observation
Chen et al., 2011 [60] Rats ADSCs - Acute renal failure 72 h
Cao et al., 2010 [61] Rats hUMSCs - Acute renal failure 72 h
Yuan et al., 2011 [63] Mice VEGF-modified ESCs - Acute renal failure 72 h
Chen et al., 2011 [64] Rats FGF-modified hUMSCs - Acute renal failure 72 h
Zhou et al., 2013 [65] Rats Exosomes released by hUMSCs - Acute renal failure 120 h
Yu et al., 2014 [67] Rats - KAM Partially nephrectomized kidneys 6 weeks
Guan et al., 2015 [66] Rats ESCs KAM Nephrectomized kidneys 2 weeks
Table 1  Tissue engineering approaches used for renal reconstruction in China.
Research Animals for modeling Cell types Biomaterial/artificial tissue Repaired length Duration of observation
Fu et al., 2012 [71] Mice Ureteral epithelial cells PLLA-collagen nanofibrous - 2 weeks
Xu et al., 2012 [73] Rats Bladder epithelial cells PLLA 0.9 cm 3 weeks
Liao et al., 2013 [9] Rabbits BMSCs + SMCs BAM 4 cm 16 weeks
Zhao et al., 2012 [10] Rabbits Mesothelial cells BAM 3 cm 16 weeks
Shi et al., 2012 [37] Mice ADSCs induced epithelial cells PLA/collagen scaffolds - 2 weeks
Meng et al., 2015 [74] Rabbits ADSCs + SMCs BAM 4 cm 16 weeks
Table 2  Tissue engineering approaches for ureteral reconstruction in China.
Research Animals for modeling Cell types Biomaterial/artificial tissue Repaired surface defect Duration of observation
Zhu et al., 2011 [75] Rabbits - BAM - 24 weeks
Wang and Liao, 2014 [76] Rabbits - SIS 10 cm × 3 cm × 3 mm 24 weeks
Zhao et al., 2015 [77] Rats - BAM-silk fibroin (SF) 10 mm × 10 mm 12 weeks
Jiang et al., 2015 [78] Rabbits - VEGF-loaded nanoparticles-modified BAM 2 cm × 3 cm 12 weeks
Xiong et al., 2015 [79] Swine - VEGF-loaded nanoparticles-modified BAM 35%-50% of the bladder 12 weeks
Chen et al., 2014 [80] Rats - FGF modified BAM A diameter of 1 cm 12 weeks
Chen et al., 2010 [81] Rats - FGF modified collagen scaffolds Half of bladder upper 12 weeks
Zhou et al., 2013 [82] Rats - PDGF and VEGF modified BAM 4 cm × 5 cm 24 weeks
Jiang et al., 2016 [83] Rabbits - FGF and VEGF modified BAM 2 cm × 3 cm 12 weeks
Chen et al., 2011 [85] Swine VEGF modified EPCs BAM 40% of the bladder 24 weeks
Zhang et al., 2004 [86] Mice SMCs + UCs SIS 1 cm × 1 cm 12 weeks
Zhu et al., 2010 [87] Rabbits ADSCs BAM 1.5 cm × 1.5 cm 24 weeks
Zhe et al., 2016 [88] Rats ADSCs BAM - 14 weeks
Yuan et al., 2013 [89] Canine hUMSCs BAM 40% of the bladder 12 weeks
Table 3  Tissue engineering approaches for bladder reconstruction in China.
Research Animals for modeling Biomaterial/artificial tissue Repaired length Duration of observation
Yang et al., 2004 [90] Rabbits Urethral extracellular matrix 1.0-1.5 cm 24 weeks
Wang et al., 2005 [91] Rabbits Human cadaveric bladder submucosa 0.5-1.0 cm 24 weeks
Huang et al., 2006 [92] Rabbits Porcine SIS 2 cm 12 weeks
Huang et al., 2014 [94] Rabbits 3D porous BAM 1.5 cm 3 months
Wang et al., 2013 [95] Rabbit BAM + PLGA conjugated with VEGF 3 cm 3 months
Lv et al., 2016 [96] Rabbits Oxygenating keratin/silk fibroin scaffold 1.5 cm × 0.8 cm 6 months
Jia et al., 2015 [97] Beagle dog Collagen-binding VEGF 5 cm 6 months
Table 4  Cell-free grafts applied in urethral reconstruction in China.
Research Animals for modeling Cell types Biomaterial/artificial tissue Repaired length Duration of observation
Fu et al., 2008 [99] Rabbits Foreskin epidermal cells Acellular collagen matrix 1.5 cm 12 months
Fu et al., 2007 [15] Rabbits Foreskin epidermal cells Acellular collagen matrix 1.5 cm 6 months
Xie et al., 2013 [100] Female beagle dogs Urothelial cells Electrospun silk fibroin matrices 3 cm × 1 cm 6 months
Gu et al., 2012 [101] Rabbits Mesothelial cells BAM 1.5 cm 6 months
Li et al., 2013 [105] Rabbits BMSCs + SMCs BAM 2.0 cm 16 weeks
Li et al., 2014 [38] Rabbits Epith-rASCs BAM 2.0 cm × 0.8 cm 6 months
Li et al., 2013 [106] Rabbits (TGF-β1 siRNA) fibroblasts + Oral keratinocytes BAM 2.0 × 0.8 cm 6 months
Wang et al., 2014 [104] Rabbits Urethral epithelium cells Denuded human amniotic scaffold 0.5 cm × 1 cm 3 months
Huang et al., 2015 [108] Rabbits Lingual keratinocytes 3D porous bacterial cellulose 2.0 cm × 0.8 cm 3 months
Zhang et al., 2015 [107] Rabbits Bladder epithelial cells + fibroblasts ICG-001 delivering collagen/(PLLA-CL) nanofibrous 2.0 cm × 0.8 cm 3 months
Table 5  Cell-seeded grafts applied in urethral reconstruction in China.
[1] A. Mangera, C. Chapple , Management of anterior urethral stricture: an evidence-based approach,Curr Opin Urol, 20(2010), pp. 453-458.
doi: 10.1097/MOU.0b013e32833ee8d5 pmid: 20827208
[2] S.F. Badylak, D. Taylor, K. Uygun , Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds,Annu Rev Biomed Eng, 13(2011), pp. 27-53.
doi: 10.1146/annurev-bioeng-071910-124743 pmid: 21417722
[3] A. Mangera, C.R. Chapple , Tissue engineering in urethral reconstruction - an update,Asian J Androl, 15(2013), pp. 89-92.
doi: 10.1038/aja.2012.91 pmid: 23042444
[4] N. Lumen, W. Oosterlinck, P. Hoebeke , Urethral reconstruction using buccal mucosa or penile skin grafts: systematic review and meta-analysis,Urol Int, 89(2012), pp. 387-394.
doi: 10.1159/000341138 pmid: 22889835
[5] A. Atala , Recent applications of regenerative medicine to urologic structures and related tissues,Curr Opin Urol, 16(2006), pp. 305-309.
doi: 10.1049/ip-gtd:20010157 pmid: 16770133
[6] A. El-Assmy, A.T. Hafez, M.T. El-Sherbiny, M.A. El-Hamid, T. Mohsen, E.M. Nour , et al., Use of single layer small intestinal submucosa for long segment ureteral replacement: a pilot study, J Urol 171 ( 2004), pp. 1939-1942,
doi: 10.1097/01.ju.0000121437.94629.ef pmid: 15076316
[7] E.N. Liatsikos, C.Z. Dinlenc, R. Kapoor, N.O. Bernardo, D. Pikhasov, A.E. Anderson , et al., Ureteral reconstruction: small intestine submucosa for the management of strictures and defects of the upper third of the ureter, J Urol 165 ( 2001), pp. 1719-1723,
doi: 10.1016/S0022-5347(05)66401-4 pmid: 11342963
[8] F. Chen, J.J. Yoo, A. Atala , Experimental and clinical experience using tissue regeneration for urethral reconstruction,World J Urol, 18(2000), pp. 67-70.
doi: 10.1007/s003450050012 pmid: 10766047
[9] W. Liao, S. Yang, C. Song, X. Li, Y. Li, Y. Xiong , Construction of ureteral grafts by seeding bone marrow mesenchymal stem cells and smooth muscle cells into bladder acellular matrix,Transplant Proc, 45(2013), pp. 730-734.
doi: 10.1016/j.transproceed.2012.08.023 pmid: 23498814
[10] Z. Zhao, H. Yu, F. Xiao, X. Wang, S. Yang, S. Li , Differentiation of adipose-derived stem cells promotes regeneration of smooth muscle for ureteral tissue engineering,J Surg Res, 178(2012), pp. 55-62.
doi: 10.1016/j.jss.2012.01.047 pmid: 22482758
[11] G. Romagnoli, M. De Luca, F. Faranda, R. Bandelloni, A.T. Franzi, F. Cataliotti , et al., Treatment of posterior hypospadias by the autologous graft of cultured urethral epithelium,N Engl J Med, 323(1990), pp. 527-530.
doi: 10.1056/NEJM199008233230806 pmid: 2377177
[12] Y. Zhang, E. McNeill, H. Tian, S. Soker, K.E. Andersson, J.J. Yoo , et al., Urine derived cells are a potential source for urological tissue reconstruction,J Urol, 180(2008), pp. 2226-2233.
doi: 10.1016/j.juro.2008.07.023 pmid: 18804817
[13] U. Nagele, S. Maurer, G. Feil, C. Bock, J. Krug, K.D. Sievert , et al., In vitro investigations of tissue-engineered multilayered urothelium established from bladder washings,Eur Urol, 54(2008), pp. 1414-1422.
doi: 10.1016/j.eururo.2008.01.091 pmid: 18280639
[14] M. Fossum, J. Skikuniene, A. Orrego, A. Nordenskjold, Prepubertal follow-up after hypospadias repair with autologous In vitro cultured urothelial cells Acta Paediatr(Oslo, Norway:1992), 101(2012), pp. 755-760.
doi: 10.1111/j.1651-2227.2012.02659.x pmid: 22471328
[15] Q. Fu, C.L. Deng, W. Liu, Y.L. Cao , Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix,BJU Int, 99(2007), pp. 1162-1165.
doi: 10.1111/j.1464-410X.2006.06691.x pmid: 17244284
[16] S. Bhargava, J.M. Patterson, R.D. Inman, S. MacNeil, C.R. Chapple , Tissue-engineered buccal mucosa urethroplasty - clinical outcomes,Eur Urol, 53(2008), pp. 1263-1269.
doi: 10.1016/j.eururo.2008.01.061 pmid: 18262717
[17] J.G. Rheinwald, H. Green , Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells,Cell, 6(1975), pp. 331-343.
doi: 10.1016/S0092-8674(75)80001-8
[18] H. Orabi, T. AbouShwareb, Y. Zhang, J.J. Yoo, A. Atala , Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study,Eur Urol, 63(2013), pp. 531-538.
doi: 10.1016/j.eururo.2012.07.041 pmid: 3554849
[19] C. Zhu, D. Ying, D. Zhou, J. Mi, W. Zhang, Q. Chang , et al., Expression of TGF-beta1 in smooth muscle cells regulates endothelial progenitor cells migration and differentiation,J Surg Res, 125(2005), pp. 151-156.
doi: 10.1016/j.jss.2004.12.006 pmid: 15854667
[20] M. Xie, Y. Xu, L. Song, J. Wang, X. Lv, Y. Zhang , Tissue-engineered buccal mucosa using silk fibroin matrices for urethral reconstruction in a canine model,J Surg Res, 188(2014), pp. 1-7.
doi: 10.1016/j.jss.2013.11.1102 pmid: 24411303
[21] A.O. Phillips, R. Steadman , Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury,Histol Histopathol, 17(2002), pp. 247-252.
doi: 10.14670/HH-17.247 pmid: 11813875
[22] B.S. Cummings, J.M. Lasker, L.H. Lash , Expression of glutathione-dependent enzymes and cytochrome P450s in freshly isolated and primary cultures of proximal tubular cells from human kidney,J Pharmacol Exp Ther, 293(2000), pp. 677-685.
pmid: 10773044
[23] H.M. Blau, T.R. Brazelton, J.M. Weimann , The evolving concept of a stem cell: entity or function?,Cell, 105(2001), pp. 829-841.
doi: 10.1016/S0092-8674(01)00409-3
[24] E. Fuchs, J.A. Segre , Stem cells: a new lease on life,Cell, 100(2000), pp. 143-155.
doi: 10.1016/S0092-8674(00)81691-8
[25] J.R. Mauney, A. Ramachandran, R.N. Yu, G.Q. Daley, R.M. Adam, C.R. Estrada , All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms, PLoS One 5 ( 2010), p. e11513,
doi: 10.1371/journal.pone.0011513 pmid: 2903484
[26] S.L. Osborn, R. Thangappan, A. Luria, J.H. Lee, J. Nolta, E.A. Kurzrock , Induction of human embryonic and induced pluripotent stem cells into urothelium,Stem Cells Transl Med, 3(2014), pp. 610-619.
doi: 10.5966/sctm.2013-0131 pmid: 24657961
[27] M.L. Hart, K.M. Neumayer, M. Vaegler, L. Daum, B. Amend, K.D. Sievert , et al., Cell-based therapy for the deficient urinary sphincter,Curr Urol Rep, 14(2013), pp. 476-487.
doi: 10.1007/s11934-013-0352-7 pmid: 23824516
[28] D. Ilic, J.M. Polak , Stem cells in regenerative medicine: introduction,Br Med Bull, 98(2011), pp. 117-126.
doi: 10.1093/bmb/ldr012 pmid: 21565803
[29] K. Shin, J. Lee, N. Guo, J. Kim, A. Lim, L. Qu , et al., Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder, Nature, 472 ( 2011), pp. 110-114,
doi: 10.1038/nature09851 pmid: 21389986
[30] J.C. Pignon, C. Grisanzio, Y. Geng, J. Song, R.A. Shivdasani , S. Signoretti,p63-expressing cells are the stem cells of developing prostate, bladder, and colorectal epithelia,Proc Natl Acad Sci U S A, 110(2013), pp. 8105-8110.
doi: 10.1073/pnas.1221216110 pmid: 23620512
[31] H.M. Larsson, F. Gorostidi, J.A. Hubbell, Y. Barrandon, P. Frey, , Clonal, self-renewing and differentiating human and porcine urothelial cells, a novel stem cell population, PLoS One 9 ( 2014), p. e90006,
doi: 10.1371/journal.pone.0090006 pmid: 3935977
[32] H. Tian, S. Bharadwaj, Y. Liu, P.X. Ma, A. Atala, Y. Zhang , Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering,Tissue Eng Part A, 16(2010), pp. 1769-1779.
doi: 10.1089/ten.TEA.2009.0625 pmid: 2952115
[33] A.K. Sharma, P.V. Hota, D.J. Matoka, N.J. Fuller, D. Jandali, H. Thaker , et al., Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly (1,8-octanediol-co-citrate) based thin films,Biomaterials, 31(2010), pp. 6207-6217.
doi: 10.1016/j.biomaterials.2010.04.054 pmid: 20488535
[34] H. Orabi, G. Lin, L. Ferretti, C.S. Lin, T.F. Lue, , Scaffoldless tissue engineering of stem cell derived cavernous tissue for treatment of erectile function, J Sex Med 9 ( 2012), pp. 1522-1534,
doi: 10.1111/j.1743-6109.2012.02727.x pmid: 22513032
[35] M. Brzoska, H. Geiger, S. Gauer, P. Baer , Epithelial differentiation of human adipose tissue-derived adult stem cells,Biochem Biophys Res Commun, 330(2005), pp. 142-150.
doi: 10.1016/j.bbrc.2005.02.141 pmid: 15781243
[36] J. Liu, J. Huang, T. Lin, C. Zhang, X. Yin , Cell-to-cell contact induces human adipose tissue-derived stromal cells to differentiate into urothelium-like cells in vitro,Biochem Biophys Res Commun, 390(2009), pp. 931-936.
doi: 10.1016/j.bbrc.2009.10.080 pmid: 19852942
[37] J.G. Shi, W.J. Fu, X.X. Wang, Y.D. Xu, G. Li, B.F. Hong , et al., Tissue engineering of ureteral grafts by seeding urothelial differentiated hADSCs onto biodegradable ureteral scaffolds,J Biomed Mater Res Part A, 100(2012), pp. 2612-2622.
doi: 10.1002/jbm.a.34182 pmid: 22615210
[38] H. Li, Y. Xu, H. Xie, C. Li, L. Song, C. Feng , et al., Epithelial-differentiated adipose-derived stem cells seeded bladder acellular matrix grafts for urethral reconstruction: an animal model,Tissue Eng Part A, 20(2014), pp. 774-784.
doi: 10.1016/j.juro.2013.02.1635 pmid: 3926141
[39] S. Barachini, L. Trombi, S. Danti , D. D'Alessandro, B. Battolla, A. Legitimo, et al.,Morpho-functional characterization of human mesenchymal stem cells from umbilical cord blood for potential uses in regenerative medicine,Stem Cells Dev, 18(2009), pp. 293-305.
doi: 10.1089/scd.2008.0017 pmid: 18444788
[40] M. Secco, E. Zucconi, N.M. Vieira, L.L. Fogaca, A. Cerqueira, M.D. Carvalho , et al., Multipotent stem cells from umbilical cord: cord is richer than blood!,Stem Cells (Dayton, Ohio), 26(2008), pp. 146-150.
doi: 10.1634/stemcells.2007-0381 pmid: 17932423
[41] Y. Xu, D.C. Sun, Z.T. Wei, B.F. Hong, Y. Yang , Experimental study on transplantation of autologous minced muscle with human umbilical cord mesenchymal stem cells for urethral reconstruction,Eur Rev Med Pharmacol Sci, 18(2014), pp. 3412-3419.
pmid: 25491616
[42] S. Bharadwaj, G. Liu, Y. Shi, R. Wu, B. Yang, T. He , et al., Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology,Stem Cells (Dayton, Ohio), 31(2013), pp. 1840-1856.
doi: 10.1002/stem.1424 pmid: 23666768
[43] A. Bodin, S. Bharadwaj, S. Wu, P. Gatenholm, A. Atala, Y. Zhang , Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion,Biomaterials, 31(2010), pp. 8889-8901.
doi: 10.1016/j.biomaterials.2010.07.108 pmid: 20800278
[44] D. Zhang, G. Wei, P. Li, X. Zhou, Y. Zhang , Urine-derived stem cells: a novel and versatile progenitor source for cell-based therapy and regenerative medicine,Genes Dis, 1(2014), pp. 8-17.
doi: 10.1016/j.gendis.2014.07.001 pmid: 25411659
[45] M.E. Davis, P.C. Hsieh, A.J. Grodzinsky, R.T. Lee , Custom design of the cardiac microenvironment with biomaterials,Circ Res, 97(2005), pp. 8-15.
doi: 10.1161/01.RES.0000173376.39447.01
[46] D.W. Hutmacher, S. Cool , Concepts of scaffold-based tissue engineering - the rationale to use solid free-form fabrication techniques,J Cell Mol Med, 11(2007), pp. 654-669.
doi: 10.1111/j.1582-4934.2007.00078.x pmid: 17760831
[47] Z.S. Patel, A.G. Mikos , Angiogenesis with biomaterial-based drug- and cell-delivery systems,J Biomater Sci Polym Ed, 15(2004), pp. 701-726.
doi: 10.1163/156856204774196117 pmid: 15255521
[48] J.A. Burdick, G. Vunjak-Novakovic , Engineered microenvironments for controlled stem cell differentiation,Tissue Eng Part A, 15(2009), pp. 205-219.
doi: 10.1089/ten.tea.2008.0131 pmid: 18694293
[49] L.A. Ribeiro-Filho, K.D. Sievert,Acellular matrix in urethral reconstruction,Adv Drug Deliv Rev, 82/83(2015), pp. 38-46.
doi: 10.1016/j.addr.2014.11.019 pmid: 25477304
[50] A. Raya-Rivera, D.R. Esquiliano, J.J. Yoo, E. Lopez-Bayghen, S. Soker, A. Atala , Tissue-engineered autologous urethras for patients who need reconstruction: an observational study,Lancet (London, England), 377(2011), pp. 1175-1182.
doi: 10.1016/S0140-6736(10)62354-9 pmid: 21388673
[51] A. Atala , Engineering organs,Curr Opin Biotechnol, 20(2009), pp. 575-592.
doi: 10.1016/j.copbio.2009.10.003
[52] J.E. Nuininga, M.J. Koens, D.M. Tiemessen, E. Oosterwijk, W.F. Daamen, P.J. Geutjes , et al., Urethral reconstruction of critical defects in rabbits using molecularly defined tubular type I collagen biomatrices: key issues in growth factor addition,Tissue Eng Part A, 16(2010), pp. 3319-3328.
doi: 10.1089/ten.tea.2010.0053 pmid: 20662739
[53] S.J. Bullers, S.C. Baker, E. Ingham, J. Southgate , The human tissue-biomaterial interface: a role for PPARgamma-dependent glucocorticoid receptor activation in regulating the CD163+ M2 macrophage phenotype,Tissue Eng Part A, 20(2014), pp. 2390-2401.
doi: 10.1089/ten.TEA.2013.0628 pmid: 4161139
[54] J.R. Mauney, T. Nguyen, K. Gillen, C. Kirker-Head, J.M. Gimble, D.L. Kaplan , Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds,Biomaterials, 28(2007), pp. 5280-5290.
doi: 10.1016/j.biomaterials.2007.08.017 pmid: 17765303
[55] S. Korossis, F. Bolland, J. Southgate, E. Ingham, J. Fisher , Regional biomechanical and histological characterisation of the passive porcine urinary bladder: implications for augmentation and tissue engineering strategies,Biomaterials, 30(2009), pp. 266-275.
doi: 10.1016/j.biomaterials.2008.09.034 pmid: 18926570
[56] A.L. Brown, W. Farhat, P.A. Merguerian, G.J. Wilson, A.E. Khoury, K.A. Woodhouse , 22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model,Biomaterials, 23(2002), pp. 2179-2190.
doi: 10.1016/S0142-9612(01)00350-7 pmid: 11962659
[57] K. Takahashi, S. Yamanaka , Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,Cell, 126(2006), pp. 663-676.
doi: 10.1016/j.cell.2006.07.024
[58] K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda , et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors,Cell, 131(2007), pp. 861-872.
doi: 10.1016/j.cell.2007.11.019
[59] M. Takasato, P.X. Er, M. Becroft, J.M. Vanslambrouck, E.G. Stanley, A.G. Elefanty , et al., Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney,Nat Cell Biol, 16(2014), pp. 118-126.
doi: 10.1038/ncb2894 pmid: 24335651
[60] Y.T. Chen, C.K. Sun, Y.C. Lin, L.T. Chang, Y.L. Chen, T.H. Tsai , et al., Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction,J Transl Med, 9(2011), p. 51.
doi: 10.1186/1479-5876-9-51 pmid: 21545725
[61] H. Cao, H. Qian, W. Xu, W. Zhu, X. Zhang, Y. Chen , et al., Mesenchymal stem cells derived from human umbilical cord ameliorate ischemia/reperfusion-induced acute renal failure in rats,Biotechnol Lett, 32(2010), pp. 725-732.
doi: 10.1007/s10529-010-0207-y pmid: 20131083
[62] F. Togel, K. Weiss, Y. Yang, Z. Hu, P. Zhang, C. Westenfelder , Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury,Am J Physiol Renal Physiol, 292(2007), pp. F1626-F1635.
doi: 10.1152/ajprenal.00339.2006
[63] L. Yuan, M.J. Wu, H.Y. Sun, J. Xiong, Y. Zhang, C.Y. Liu , et al., VEGF-modified human embryonic mesenchymal stem cell implantation enhances protection against cisplatin-induced acute kidney injury,Am J Physiol Renal Physiol, 300(2011), pp. F207-F218.
doi: 10.1152/ajprenal.00073.2010 pmid: 20943766
[64] Y. Chen, H. Qian, W. Zhu, X. Zhang, Y. Yan, S. Ye , et al., Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury,Stem Cells Dev, 20(2011), pp. 103-113.
doi: 10.1089/scd.2009.0495 pmid: 20446811
[65] Y. Zhou, H. Xu, W. Xu, B. Wang, H. Wu, Y. Tao , et al., Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro,Stem Cell Res Ther, 4(2013), p. 34.
doi: 10.1186/scrt194 pmid: 3707035
[66] Y. Guan, S. Liu, Y. Liu, C. Sun, G. Cheng, Y. Luan , et al., Porcine kidneys as a source of ECM scaffold for kidney regeneration,Mater Sci Eng C, Mater Biol Appl, 56(2015), pp. 451-456.
doi: 10.1016/j.msec.2015.07.007 pmid: 26249614
[67] Y.L. Yu, Y.K. Shao, Y.Q. Ding, K.Z. Lin, B. Chen, H.Z. Zhang , et al., Decellularized kidney scaffold-mediated renal regeneration,Biomaterials, 35(2014), pp. 6822-6828.
doi: 10.1016/j.biomaterials.2014.04.074 pmid: 24855960
[68] Y. Guan, S. Liu, C. Sun, G. Cheng, F. Kong, Y. Luan , et al., The effective bioengineering method of implantation decellularized renal extracellular matrix scaffolds,Oncotarget, 6(2015), pp. 36126-36138.
doi: 10.18632/oncotarget.5304 pmid: 4742166
[69] Y. Osman, A. Shokeir, M. Gabr, N. El-Tabey, T. Mohsen, M. El-Baz, , Canine ureteral replacement with long acellular matrix tube: is it clinically applicable?, J Urol 172 ( 2004), pp. 1151-1154,
doi: 10.1097/01.ju.0000134886.44065.00 pmid: 15311060
[70] S. Baltaci, G. Ozer, E. Ozer, T. Soygur, O. Besalti, K. Anafarta , Failure of ureteral replacement with Gore-Tex tube grafts,Urology, 51(1998), pp. 400-403.
doi: 10.1016/S0090-4295(97)00632-8 pmid: 9510342
[71] W.J. Fu, Y.D. Xu, Z.X. Wang, G. Li, J.G. Shi, F.Z. Cui , et al., New ureteral scaffold constructed with composite poly (l-lactic acid)-collagen and urothelial cells by new centrifugal seeding system,J Biomed Mater Res Part A, 100(2012), pp. 1725-1733.
doi: 10.1002/jbm.a.34134 pmid: 22447771
[72] Y. Xu, W. Fu, Z. Wang, G. Li, X. Zhang, , A tissue-specific scaffold for tissue engineering-based ureteral reconstruction, PLoS One 10 ( 2015), p. e0120244,
doi: 10.1371/journal.pone.0120244 pmid: 25775033
[73] Y. Xu, W. Fu, G. Li, J. Shi, H. Tan, K. Hu , et al., Autologous urothelial cells transplantation onto a prefabricated capsular stent for tissue engineered ureteral reconstruction,J Mater Sci Mater Med, 23(2012), pp. 1119-1128.
doi: 10.1007/s10856-012-4583-9 pmid: 22382733
[74] L.C. Meng, W.B. Liao, S.X. Yang, Y.H. Xiong, C. Song, L.Q. Liu , Seeding homologous adipose-derived stem cells and bladder smooth muscle cells into bladder submucosa matrix for reconstructing the ureter in a rabbit model,Transplant Proc, 47(2015), pp. 3002-3011.
doi: 10.1016/j.transproceed.2015.10.035 pmid: 26707328
[75] W.D. Zhu, Y.M. Xu, C. Feng, Q. Fu, L.J. Song , Different bladder defects reconstructed with bladder acellular matrix grafts in a rabbit model,Der Urol Ausg A, 50(2011), pp. 1420-1425.
doi: 10.1007/s00120-011-2627-2 pmid: 21720832
[76] Y. Wang, L. Liao, , Histologic and functional outcomes of small intestine submucosa-regenerated bladder tissue, BMC Urol 14 ( 2014), p. 69,
doi: 10.1186/1471-2490-14-69 pmid: 25148849
[77] Y. Zhao, Y. He, J.H. Guo, J.S. Wu, Z. Zhou, M. Zhang , et al., Time-dependent bladder tissue regeneration using bilayer bladder acellular matrix graft-silk fibroin scaffolds in a rat bladder augmentation model,Acta Biomater, 23(2015), pp. 91-102.
doi: 10.1016/j.actbio.2015.05.032 pmid: 26049152
[78] X. Jiang, Q. Xiong, G. Xu, H. Lin, X. Fang, D. Cui , et al., VEGF-loaded nanoparticle-modified BAMAs enhance angiogenesis and inhibit graft shrinkage in tissue-engineered bladder,Ann Biomed Eng, 43(2015), pp. 2577-2586.
doi: 10.1007/s10439-015-1284-9 pmid: 25711152
[79] Q. Xiong, H. Lin, X. Hua, L. Liu, P. Sun, Z. Zhao , et al., A nanomedicine approach to effectively inhibit contracture during bladder acellular matrix allograft-induced bladder regeneration by sustained delivery of vascular endothelial growth factor,Tissue Eng Part A, 21(2015), pp. 45-52.
doi: 10.1089/ten.TEA.2013.0671 pmid: 24947133
[80] W. Chen, C. Shi, X. Hou, W. Zhang, L. Li , Bladder acellular matrix conjugated with basic fibroblast growth factor for bladder regeneration,Tissue Eng Part A, 20(2014), pp. 2234-2242.
doi: 10.1089/ten.TEA.2013.0730 pmid: 24483233
[81] W. Chen, C. Shi, S. Yi, B. Chen, W. Zhang, Z. Fang , et al., Bladder regeneration by collagen scaffolds with collagen binding human basic fibroblast growth factor,J Urol, 183(2010), pp. 2432-2439.
doi: 10.1016/j.juro.2010.02.042 pmid: 20403614
[82] L. Zhou, B. Yang, C. Sun, X. Qiu, Z. Sun, Y. Chen , et al., Coadministration of platelet-derived growth factor-BB and vascular endothelial growth factor with bladder acellular matrix enhances smooth muscle regeneration and vascularization for bladder augmentation in a rabbit model,Tissue Eng Part A, 19(2013), pp. 264-276.
doi: 10.1089/ten.tea.2011.0609
[83] X. Jiang, H. Lin, D. Jiang, G. Xu, X. Fang, L. He , et al., Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits,Sci Rep, 6(2016), p. 20784.
doi: 10.1038/srep20784 pmid: 26854200
[84] L. Zhou, J. Xia, X. Qiu, P. Wang, R. Jia, Y. Chen, et al., In vitro evaluation of endothelial progenitor cells from adipose tissue as potential angiogenic cell sources for bladder angiogenesis, PLoS One 10 ( 2015), p. e0117644,
doi: 10.1371/journal.pone.0117644 pmid: 25706311
[85] B.S. Chen, H. Xie, S.L. Zhang, H.Q. Geng, J.M. Zhou, J. Pan , et al., Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells,Int J Artif Organs, 34(2011), pp. 1137-1146.
doi: 10.5301/ijao.5000069 pmid: 22198599
[86] Y. Zhang, B.P. Kropp, H.K. Lin, R. Cowan, E.Y. Cheng , Bladder regeneration with cell-seeded small intestinal submucosa,Tissue Eng, 10(2004), pp. 181-187.
doi: 10.1089/107632704322791835 pmid: 15009944
[87] W.D. Zhu, Y.M. Xu, C. Feng, Q. Fu, L.J. Song, L. Cui , Bladder reconstruction with adipose-derived stem cell-seeded bladder acellular matrix grafts improve morphology composition,World J Urol, 28(2010), pp. 493-498.
doi: 10.1007/s00345-010-0508-8 pmid: 20091038
[88] Z. Zhe, D. Jun, Z. Yang, X. Mingxi, Z. Ke, Z. Ming , et al., Bladder acellular matrix grafts seeded with adipose-derived stem cells and incubated intraperitoneally promote the regeneration of bladder smooth muscle and nerve in a rat model of bladder augmentation,Stem Cells Dev, 25(2016), pp. 405-414.
doi: 10.1089/scd.2015.0246 pmid: 26863067
[89] H. Yuan, Y. Zhuang, J. Xiong, W. Zhi, L. Liu, Q. Wei , et al., Human umbilical mesenchymal stem cells-seeded bladder acellular matrix grafts for reconstruction of bladder defects in a canine model, PLoS One 8 ( 2013), p. e80959,
doi: 10.1016/S1569-9056(14)60178-0 pmid: 3858375
[90] S.X. Yang, Y. Yao, Y.F. Hu, C. Song, L.L. Wang, H.M. Jin , Reconstruction of rabbit urethra using urethral extracellular matrix,Chin Med J, 117(2004), pp. 1786-1790.
doi: 10.1007/BF02914571 pmid: 19408728
[91] Y.Q. Wang, Y.Q. Li, L.Q. Liu, J.J. Xu, R. Huo, Q. Li , et al. [Rabbit urethral defect repair with freeze-dried acellular bladder submucosa] Zhonghua Zhengxing Waike Zazhi, 21(2005), pp. 62-65.
pmid: 15844603
92 [Article in Chinese] .
[92] X. Huang, J. Luo, Y. Liao, Y. Qu, Z. Yang . [Study on small intestinal submucosa as repair materials in urethral reconstruction] Zhongguo Xiufu Chongjian Waike Zazhi, 20(2006), pp. 206-209.
[93] M. Lee, B.M. Wu, J.C. Dunn , Effect of scaffold architecture and pore size on smooth muscle cell growth,J Biomed Mater Res Part A, 87(2008), pp. 1010-1016.
doi: 10.1002/jbm.a.31816 pmid: 18257081
[94] J.W. Huang, M.K. Xie, Y. Zhang, G.J. Wei, X. Li, H.B. Li , et al., Reconstruction of penile urethra with the 3-dimensional porous bladder acellular matrix in a rabbit model,Urology, 84(2014), pp. 1499-1505.
doi: 10.1016/j.urology.2014.07.044 pmid: 25306480
[95] J.H. Wang, Y.M. Xu, Q. Fu, L.J. Song, C. Li, Q. Zhang , et al., Continued sustained release of VEGF by PLGA nanospheres modified BAMG stent for the anterior urethral reconstruction of rabbit, Asian Pac J Trop Med, 6 ( 2013), pp. 481-484,
doi: 10.1016/S1995-7645(13)60078-4 pmid: 23711710
[96] X. Lv, Z. Li, S. Chen, M. Xie, J. Huang, X. Peng , et al., Structural and functional evaluation of oxygenating keratin/silk fibroin scaffold and initial assessment of their potential for urethral tissue engineering,Biomaterials, 84(2016), pp. 99-110.
doi: 10.1016/j.biomaterials.2016.01.032 pmid: 26826299
[97] W. Jia, H. Tang, J. Wu, X. Hou, B. Chen, W. Chen , et al., Urethral tissue regeneration using collagen scaffold modified with collagen binding VEGF in a beagle model,Biomaterials, 69(2015), pp. 45-55.
doi: 10.1016/j.biomaterials.2015.08.009 pmid: 26280949
[98] H. Orabi, S. Bouhout, A. Morissette, A. Rousseau, S. Chabaud, S. Bolduc , Tissue engineering of urinary bladder and urethra: advances from bench to patients, Sci World J, 2013 ( 2013), p. 154564.
doi: 10.1155/2013/154564 pmid: 24453796
[99] Q. Fu, C.L. Deng, X.F. Song, Y.M. Xu , Long-term study of male rabbit urethral mucosa reconstruction using epidermal cell,Asian J Androl, 10(2008), pp. 719-722.
doi: 10.1111/j.1745-7262.2008.00419.x pmid: 18645674
[100] M. Xie, L. Song, J. Wang, S. Fan, Y. Zhang, Y. Xu , Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction,J Surg Res, 184(2013), pp. 774-781.
doi: 10.1016/j.jss.2013.04.016 pmid: 23706393
[101] G.L. Gu, S.J. Xia, J. Zhang, G.H. Liu, L. Yan, Z.H. Xu , et al., Tubularized urethral replacement using tissue-engineered peritoneum-like tissue in a rabbit model,Urol Int, 89(2012), pp. 358-364.
doi: 10.1159/000339745 pmid: 22797559
[102] J.L. Long, P. Zuk, G.S. Berke, D.K. Chhetri , Epithelial differentiation of adipose-derived stem cells for laryngeal tissue engineering,Laryngoscope, 120(2010), pp. 125-131.
doi: 10.1002/lary.21589 pmid: 21225723
[103] N.J. Koizumi, T.J. Inatomi, C.J. Sotozono, N.J. Fullwood, A.J. Quantock, S. Kinoshita , Growth factor mRNA and protein in preserved human amniotic membrane,Curr Eye Res, 20(2000), pp. 173-177.
doi: 10.1076/0271-3683(200003)2031-9FT173 pmid: 10694891
[104] F. Wang, T. Liu, L. Yang, G. Zhang, H. Liu, X. Yi , et al., Urethral reconstruction with tissue-engineered human amniotic scaffold in rabbit urethral injury models,Med Sci Monit Int Med J Exp Clin Res, 20(2014), pp. 2430-2438.
doi: 10.12659/MSM.891042 pmid: 4257484
[105] C.L. Li, W.B. Liao, S.X. Yang, C. Song, Y.W. Li, Y.H. Xiong , et al., Urethral reconstruction using bone marrow mesenchymal stem cell- and smooth muscle cell-seeded bladder acellular matrix,Transplant Proc, 45(2013), pp. 3402-3407.
doi: 10.1016/j.transproceed.2013.07.055 pmid: 24182824
[106] C. Li, Y.M. Xu, Z.S. Liu, H.B. Li , Urethral reconstruction with tissue engineering and RNA interference techniques in rabbits, Urology, 81 ( 2013), pp. 1075-1080,
doi: 10.1016/j.urology.2013.01.041 pmid: 23490528
[107] K. Zhang, X. Guo, W. Zhao, G. Niu, X. Mo, Q. Fu , Application of Wnt pathway inhibitor delivering scaffold for inhibiting fibrosis in urethra strictures: in vitro and in vivo study,Int J Mol Sci, 16(2015), pp. 27659-27676.
doi: 10.3390/ijms161126050 pmid: 4661908
[108] J.W. Huang, X.G. Lv, Z. Li, L.J. Song, C. Feng, M.K. Xie , et al., Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model,Biomed Mater (Bristol, England), 10(2015), p. 055005.
doi: 10.1088/1748-6041/10/5/055005 pmid: 26358641
[109] A. Atala, M. Danilevskiy, A. Lyundup, P. Glybochko, D. Butnaru, A. Vinarov , et al., The potential role of tissue-engineered urethral substitution: clinical and preclinical studies,J Tissue Eng Regen Med, 11(2015), pp. 3-19.
doi: 10.1002/term.2112 pmid: 26631921
[110] E.L. Dvorin, J. Wylie-Sears, S. Kaushal, D.P. Martin, J. Bischoff , Quantitative evaluation of endothelial progenitors and cardiac valve endothelial cells: proliferation and differentiation on poly-glycolic acid/poly-4-hydroxybutyrate scaffold in response to vascular endothelial growth factor and transforming growth factor beta1,Tissue Eng, 9(2003), pp. 487-493.
doi: 10.1089/107632703322066660
[111] V. Cattan, G. Bernard, A. Rousseau, S. Bouhout, S. Chabaud, F.A. Auger , et al., Mechanical stimuli-induced urothelial differentiation in a human tissue-engineered tubular genitourinary graft,Eur Urol, 60(2011), pp. 1291-1298.
doi: 10.1016/j.eururo.2011.05.051 pmid: 21684066
[112] B. Duan, L.A. Hockaday, K.H. Kang, J.T. Butcher , 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels,J Biomed Mater Res Part A, 101(2013), pp. 1255-1264.
doi: 10.1002/jbm.a.34420 pmid: 23015540
[113] J.A. Phillippi, E. Miller, L. Weiss, J. Huard, A. Waggoner, P. Campbell , Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations,Stem Cells (Dayton, Ohio), 26(2008), pp. 127-134
doi: 10.1634/stemcells.2007-0520 pmid: 17901398
No related articles found!
[1] Zhixiang Wang, Bing Liu, Xiaofeng Gao, Yi Bao, Yang Wang, Huamao Ye, Yinghao Sun, Linhui Wang. Laparoscopic ureterolysis with simultaneous ureteroscopy and percutaneous nephroscopy for treating complex ureteral obstruction after failed endoscopic intervention: A technical report[J]. Asian Journal of Urology, 2015, 2(4): 238 -243 .
[2] Louis R. Kavoussi. News from leading international academic urology departments[J]. Asian Journal of Urology, 2017, 4(1): 1 -2 .
[3] Rikiya Taoka, Yoshiyuki Kakehi. The influence of asymptomatic inflammatory prostatitis on the onset and progression of lower urinary tract symptoms in men with histologic benign prostatic hyperplasia[J]. Asian Journal of Urology, 2017, 4(3): 158 -163 .
[4] Cheuk Fan Shum, Weida Lau, Chang Peng Colin Teo. Medical therapy for clinical benign prostatic hyperplasia:a1 Antagonists, 5a reductase inhibitors and their combination[J]. Asian Journal of Urology, 2017, 4(3): 185 -190 .
[5] Foo Keong Tatt. Current consensus and controversies on male LUTS/BPH (part two)[J]. Asian Journal of Urology, 2018, 5(1): 8 -9 .
[6] Rishi R. Sekar, Claire M. De La Calle, Dattatraya Patil, Sarah A. Holzman, Yoram Baum, Umer Sheikh, Jonathan H. Huang, Adeboye O. Osunkoya, Brian P. Pollack, Haydn T. Kissick, Kenneth Ogan, Viraj A. Master. Major histocompatibility complex I upregulation in clear cell renal cell carcinoma is associated with increased survival[J]. Asian Journal of Urology, 2016, 3(2): 75 -81 .
[7] Ryan Yu, Jefferson Terry, Mutaz Alnassar, Jorge Demaria. Pediatric fibrous pseudotumor of the tunica vaginalis testis[J]. Asian Journal of Urology, 2016, 3(2): 99 -102 .
[8] Aso Omer Rashid, Saman Salih Fakhulddin. Risk factors for fever and sepsis after percutaneous nephrolithotomy[J]. Asian Journal of Urology, 2016, 3(2): 82 -87 .
[9] Christopher Hartman, Nikhil Gupta, David Leavitt, David Hoenig, Zeph Okeke, Arthur Smith. Advances in percutaneous stone surgery[J]. Asian Journal of Urology, 2015, 2(1): 26 -32 .
[10] Aldamanhori Reem,I.Osman Nadir,R.Chapple Christopher. Underactive bladder: Pathophysiology and clinical significance[J]. Asian Journal of Urology, 2018, 5(1): 17 -21 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed