Please wait a minute...
Search Asian J Urol Advanced Search
Share 
Asian Journal of Urology, 2015, 2(4): 214-219    doi: 10.1016/j.ajur.2015.09.002
  本期目录 | 过刊浏览 | 高级检索 |
Three-dimensional printing technique assisted cognitive fusion in targeted prostate biopsy
Yan Wanga, Xu Gaoa, Qingsong Yangb, Haifeng Wanga, Ting Shia, Yifan Changa, Chuanliang Xua, Yinghao Suna
a Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China;
b Department of Radiology, Changhai Hospital, Second Military Medical University, Shanghai, China
Three-dimensional printing technique assisted cognitive fusion in targeted prostate biopsy
Yan Wanga, Xu Gaoa, Qingsong Yangb, Haifeng Wanga, Ting Shia, Yifan Changa, Chuanliang Xua, Yinghao Suna
a Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China;
b Department of Radiology, Changhai Hospital, Second Military Medical University, Shanghai, China
下载:  PDF (1819KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 Objective: To explore the effect of 3-dimensional (3D) printing-assisted cognitive fusion on improvement of the positive rate in prostate biopsy. Methods: From August to December 2014, 16 patients with suspected prostatic lesions detected by multiparametric magnetic resonance imaging (MRI) were included. Targeted prostate biopsy was performed with the use of prostate 3D reconstruction modeling, computersimulated biopsy, 3D printing, and cognitive fusion biopsy. All patients had received 3.0 T multiparametric MRI before biopsy. The DICOM MRI files were imported to medical imaging processing software for 3D reconstruction modeling to generate a printable .stl file for 3D printing with use of transparent resin as raw material. We further performed a targeted 2- to 3-core biopsy at suspected lesions spotted on MRI. Results: For the 16 patients in the present study, 3D modeling with cognitive fusion-based targeted biopsy was successfully performed. For a single patient, 1-2 lesions (average: 1.1 lesions) were discovered, followed by 2-6 cores (average: 2.4 cores) added as targeted biopsy. Systematic biopsies accounted for 192 cores in total, with a positive rate of 22.4%; targeted biopsies accounted for 39 cores in total, with a positive rate of 46.2%. Among these cases, 10 patients (62.5%) were diagnosed with prostate adenocarcinoma, in which seven were discovered by both systematic and targeted biopsy, one was diagnosed by systematic biopsy only, and two were diagnosed by targeted biopsy only. For systematic biopsy, Gleason score ranged from 6 to 8 (average: 7), while that for targeted biopsy ranged from 6 to 9 (average: 7.67). Among the seven patients that were diagnosed by both systematic and targeted biopsy, three (42.8%) were reported with a higher Gleason score in targeted therapy than in systematic biopsy.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Yan Wang
Xu Gao
Qingsong Yang
Haifeng Wang
Ting Shi
Yifan Chang
Chuanliang Xu
Yinghao Sun
关键词:  Prostate cancer  Prostate biopsy  3D printing    
Abstract: Objective: To explore the effect of 3-dimensional (3D) printing-assisted cognitive fusion on improvement of the positive rate in prostate biopsy. Methods: From August to December 2014, 16 patients with suspected prostatic lesions detected by multiparametric magnetic resonance imaging (MRI) were included. Targeted prostate biopsy was performed with the use of prostate 3D reconstruction modeling, computersimulated biopsy, 3D printing, and cognitive fusion biopsy. All patients had received 3.0 T multiparametric MRI before biopsy. The DICOM MRI files were imported to medical imaging processing software for 3D reconstruction modeling to generate a printable .stl file for 3D printing with use of transparent resin as raw material. We further performed a targeted 2- to 3-core biopsy at suspected lesions spotted on MRI. Results: For the 16 patients in the present study, 3D modeling with cognitive fusion-based targeted biopsy was successfully performed. For a single patient, 1-2 lesions (average: 1.1 lesions) were discovered, followed by 2-6 cores (average: 2.4 cores) added as targeted biopsy. Systematic biopsies accounted for 192 cores in total, with a positive rate of 22.4%; targeted biopsies accounted for 39 cores in total, with a positive rate of 46.2%. Among these cases, 10 patients (62.5%) were diagnosed with prostate adenocarcinoma, in which seven were discovered by both systematic and targeted biopsy, one was diagnosed by systematic biopsy only, and two were diagnosed by targeted biopsy only. For systematic biopsy, Gleason score ranged from 6 to 8 (average: 7), while that for targeted biopsy ranged from 6 to 9 (average: 7.67). Among the seven patients that were diagnosed by both systematic and targeted biopsy, three (42.8%) were reported with a higher Gleason score in targeted therapy than in systematic biopsy.
Key words:  Prostate cancer    Prostate biopsy    3D printing
收稿日期:  2015-08-28      修回日期:  2015-09-08           出版日期:  2015-10-01      发布日期:  2015-10-29      整期出版日期:  2015-10-01
通讯作者:  Yinghao Sun    E-mail:  sunyh@medmail.com.cn
引用本文:    
Yan Wang, Xu Gao, Qingsong Yang, Haifeng Wang, Ting Shi, Yifan Chang, Chuanliang Xu, Yinghao Sun. Three-dimensional printing technique assisted cognitive fusion in targeted prostate biopsy[J]. Asian Journal of Urology, 2015, 2(4): 214-219.
Yan Wang, Xu Gao, Qingsong Yang, Haifeng Wang, Ting Shi, Yifan Chang, Chuanliang Xu, Yinghao Sun. Three-dimensional printing technique assisted cognitive fusion in targeted prostate biopsy. Asian Journal of Urology, 2015, 2(4): 214-219.
链接本文:  
http://www.ajurology.com/CN/10.1016/j.ajur.2015.09.002  或          http://www.ajurology.com/CN/Y2015/V2/I4/214
[1] Hodge KK, McNeal JE, Terris MK, Stamey TA. Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J Urol 1989;142:71-5.
[2] Taira AV, Merrick GS, Galbreath RW, Andreini H, Taubenslag W, Curtis R, et al. Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting. Prostate Cancer Prostatic Dis 2010;13:71-7.
[3] Moore CM, Robertson NL, Arsanious N, Middleton T, Villers A, Klotz L, et al. Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur Urol 2013;63:125-40.
[4] Puech P, Potiron E, Lemaitre L, Leroy X, Haber GP, Crouzet S, et al. Dynamic contrast-enhanced-magnetic resonance imaging evaluation of intraprostatic prostate cancer: correlation with radical prostatectomy specimens. Urology 2009;74: 1094-9.
[5] Sonn GA, Chang E, Natarajan S, Margolis DJ, Macairan M, Lieu P, et al. Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. Eur Urol 2014;65: 809-15.
[6] Hoeks CM, Schouten MG, Bomers JG, Hoogendoorn SP, Hulsbergen- van de Kaa CA, Hambrock T, et al. Three-Tesla magnetic resonance-guided prostate biopsy in men with increased prostate-specific antigen and repeated, negative, random, systematic, transrectal ultrasound biopsies: detection of clinically significant prostate cancers. Eur Urol 2012;62: 902-9.
[7] Puech P, Rouviere O, Renard-Penna R, Villers A, Devos P, Colombel M, et al. Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US-MR fusion guidance versus systematic biopsyeprospective multicenter study. Radiology 2013;268:461-9.
[8] Delongchamps NB, Peyromaure M, Schull A, Beuvon F, Bouazza N, Flam T, et al. Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies. J Urol 2013;189:493-9.
[9] Cousley RR, Turner MJ. Digital model planning and computerized fabrication of orthognathic surgery wafers. J Orthod 2014;41:38-45.
[10] Rohner D, Guijarro-Martinez R, Bucher P, Hammer B. Importance of patient-specific intraoperative guides in complex maxillofacial reconstruction. J Craniomaxillofac Surg 2013;41: 382-90.
[11] Zhang Y, Ge HW, Li NC, Yu CF, Guo HF, Jin SH, et al. Evaluation of three-dimensional printing for laparoscopic partial nephrectomy of renal tumors: a preliminary report. World J Urol 2015 Apr 5 [Epub ahead of print].
[1] Per-Anders Abrahamsson. Intermittent androgen deprivation therapy in patients with prostate cancer:Connecting the dots[J]. Asian Journal of Urology, 2017, 4(4): 208-222.
[2] Yoshiyasu Amiya, Yasutaka Yamada, Masahiro Sugiura, Makoto Sasaki, Takayuki Shima, Noriyuki Suzuki, Hiroomi Nakatsu, Shino Murakami, Jun Shimazaki. Outcomes of patients older than 75 years with non-metastatic prostate cancer[J]. Asian Journal of Urology, 2017, 4(2): 102-106.
[3] Dingwei Ye, Yiran Huang, Fangjian Zhou, Keji Xie, Vsevolod Matveev, Changling Li, Boris Alexeev, Ye Tian, Mingxing Qiu, Hanzhong Li, Tie Zhou, Peter De Porre, Margaret Yu, Vahid Naini, Hongchuan Liang, Zhuli Wu, Yinghao Sun. A phase 3, double-blind, randomized placebo-controlled efficacy and safety study of abiraterone acetate in chemotherapynaïve patients with mCRPC in China, Malaysia, Thailand and Russia[J]. Asian Journal of Urology, 2017, 4(2): 75-85.
[4] Kai Zhang, Chris H. Bangma, Monique J. Roobol. Prostate cancer screening in Europe and Asia[J]. Asian Journal of Urology, 2017, 4(2): 86-95.
[5] Geoffrey Gaunay, Vinay Patel, Paras Shah, Daniel Moreira, Simon J. Hall, Manish A. Vira, Michael Schwartz, Jessica Kreshover, Eran Ben-Levi, Robert Villani, Ardeshir Rastinehad, Lee Richstone. Role of multi-parametric MRI of the prostate for screening and staging: Experience with over 1500 cases[J]. Asian Journal of Urology, 2017, 4(1): 68-74.
[6] Geoffrey S. Gaunay, Vinay Patel, Paras Shah, Daniel Moreira, Ardeshir R. Rastinehad, Eran Ben-Levi, Robert Villani, Manish A. Vira. Multi-parametric MRI of the prostate: Factors predicting extracapsular extension at the time of radical prostatectomy[J]. Asian Journal of Urology, 2017, 4(1): 31-36.
[7] Matthew E. Pollard, Alan J. Moskowitz, Michael A. Diefenbach, Simon J. Hall. Cost-effectiveness analysis of treatments for metastatic castration resistant prostate cancer[J]. Asian Journal of Urology, 2017, 4(1): 37-43.
[8] Cameron M. Armstrong, Allen C. Gao. Adaptive pathways and emerging strategies overcoming treatment resistance in castration resistant prostate cancer[J]. Asian Journal of Urology, 2016, 3(4): 185-194.
[9] James L. Gulley, Ravi A. Madan. Developing immunotherapy strategies in the treatment of prostate cancer[J]. Asian Journal of Urology, 2016, 3(4): 278-285.
[10] Jun Luo. Non-invasive actionable biomarkers for metastatic prostate cancer[J]. Asian Journal of Urology, 2016, 3(4): 170-176.
[11] Eun-Jin Yun, U-Ging Lo, Jer-Tsong Hsieh. The evolving landscape of prostate cancer stem cell: Therapeutic implications and future challenges[J]. Asian Journal of Urology, 2016, 3(4): 203-210.
[12] Dong Lin, Xinya Wang, Stephen Yiu Chuen Choi, Xinpei Ci, Xin Dong, Yuzhuo Wang. Immune phenotypes of prostate cancer cells: Evidence of epithelial immune cell-like transition?[J]. Asian Journal of Urology, 2016, 3(4): 195-202.
[13] Belinda Nghiem, Xiaotun Zhang, Hung-Ming Lam, Lawrence D. True, Ilsa Coleman, Celestia S. Higano, Peter S. Nelson, Colin C. Pritchard, Colm Morrissey. Mismatch repair enzyme expression in primary and castrate resistant prostate cancer[J]. Asian Journal of Urology, 2016, 3(4): 223-228.
[14] Shirley Cheng, Jie-Fu Chen, Yi-Tsung Lu, Leland W. K. Chung, Hsian-Rong Tseng, Edwin M. Posadas. Applications of circulating tumor cells for prostate cancer[J]. Asian Journal of Urology, 2016, 3(4): 254-259.
[15] Jin Xu, Yun Qiu. Role of androgen receptor splice variants in prostate cancer metastasis[J]. Asian Journal of Urology, 2016, 3(4): 177-184.
[1] Zhixiang Wang, Bing Liu, Xiaofeng Gao, Yi Bao, Yang Wang, Huamao Ye, Yinghao Sun, Linhui Wang. Laparoscopic ureterolysis with simultaneous ureteroscopy and percutaneous nephroscopy for treating complex ureteral obstruction after failed endoscopic intervention: A technical report[J]. Asian Journal of Urology, 2015, 2(4): 238 -243 .
[2] Louis R. Kavoussi. News from leading international academic urology departments[J]. Asian Journal of Urology, 2017, 4(1): 1 -2 .
[3] Rikiya Taoka, Yoshiyuki Kakehi. The influence of asymptomatic inflammatory prostatitis on the onset and progression of lower urinary tract symptoms in men with histologic benign prostatic hyperplasia[J]. Asian Journal of Urology, 2017, 4(3): 158 -163 .
[4] Cheuk Fan Shum, Weida Lau, Chang Peng Colin Teo. Medical therapy for clinical benign prostatic hyperplasia:a1 Antagonists, 5a reductase inhibitors and their combination[J]. Asian Journal of Urology, 2017, 4(3): 185 -190 .
[5] Foo Keong Tatt. Current consensus and controversies on male LUTS/BPH (part two)[J]. Asian Journal of Urology, 2018, 5(1): 8 -9 .
[6] Rishi R. Sekar, Claire M. De La Calle, Dattatraya Patil, Sarah A. Holzman, Yoram Baum, Umer Sheikh, Jonathan H. Huang, Adeboye O. Osunkoya, Brian P. Pollack, Haydn T. Kissick, Kenneth Ogan, Viraj A. Master. Major histocompatibility complex I upregulation in clear cell renal cell carcinoma is associated with increased survival[J]. Asian Journal of Urology, 2016, 3(2): 75 -81 .
[7] Ryan Yu, Jefferson Terry, Mutaz Alnassar, Jorge Demaria. Pediatric fibrous pseudotumor of the tunica vaginalis testis[J]. Asian Journal of Urology, 2016, 3(2): 99 -102 .
[8] Aso Omer Rashid, Saman Salih Fakhulddin. Risk factors for fever and sepsis after percutaneous nephrolithotomy[J]. Asian Journal of Urology, 2016, 3(2): 82 -87 .
[9] Christopher Hartman, Nikhil Gupta, David Leavitt, David Hoenig, Zeph Okeke, Arthur Smith. Advances in percutaneous stone surgery[J]. Asian Journal of Urology, 2015, 2(1): 26 -32 .
[10] Aldamanhori Reem,I.Osman Nadir,R.Chapple Christopher. Underactive bladder: Pathophysiology and clinical significance[J]. Asian Journal of Urology, 2018, 5(1): 17 -21 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed