Please wait a minute...
Search Asian J Urol Advanced Search
Share 
Asian Journal of Urology, 2024, 11(4): 569-574    doi: 10.1016/j.ajur.2023.07.002
  本期目录 | 过刊浏览 | 高级检索 |
Anillin actin-binding protein expression correlates with poor prognosis for prostate cancer patients
Shinichiro Yamamotoab,Daisuke Obinatab,Kenichi Takayamaa,Daigo Funakoshib,Kyoko Fujiwarac,Makoto Harad,Satoru Takahashib,Satoshi Inoueae*()
aDepartment of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan
bDepartment of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
cDepartment of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda Surugadai, Chiyoda-ku, Tokyo, Japan
dDivision of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
eResearch Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, Japan
下载:  HTML  PDF (1767KB) 
输出:  BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract: 

Objective: Octamer transcription factor 1 (OCT1), a transcription factor that interacts with androgen receptor, is involved in prostate cancer (PCa) progression. The OCT1 target gene, Anillin actin-binding protein (ANLN), is highly expressed in castration-resistant PCa tissue; however, it remains unclear whether ANLN expression in hormone-sensitive PCa tissue could be used as a predictive biomarker for poor prognosis of patients. We aimed to investigate ANLN expression in PCa tissue obtained via radical prostatectomy and its correlation with clinical parameters.

Methods: Immunohistochemical staining for ANLN was performed on 86 PCa specimens, followed by evaluation using immunoreactivity (IR) scores. Prognosis was analyzed by the log-rank test using the Kaplan-Meier method to generate a cancer-specific survival curve. The correlations between ANLN IR and clinical parameters as well as OCT1 IR were analyzed using the Chi-squared test.

Results: The median IR score was 0 for ANLN. Accordingly, given the low median IR score, an IR score of ≥3 was defined as positive. There were 17 (19.8%) ANLN-positive cases, and these cases had a significantly poorer prognosis. Multivariate analysis revealed that the Gleason score, pathological tumor and lymph node stages, and positive ANLN expression were significant predictors of poor prognosis. Notably, patients with both positive ANLN and high OCT1 expression had a significantly decreased overall survival (p=0.001).

Conclusion: ANLN, which is a OCT1 target gene especially in castration-resistant PCa, is expressed in a small number of hormone-sensitive PCa cases. Both positive ANLN expression and high OCT1 expression are significantly correlated with poor prognosis for PCa patients.

Key words:  Prostate cancer    Androgen receptor    Octamer transcription factor 1    Anillin actin-binding protein
收稿日期:  2023-02-16           接受日期:  2023-07-12      出版日期:  2024-10-20      发布日期:  2024-11-20      整期出版日期:  2024-10-20
引用本文:    
. [J]. Asian Journal of Urology, 2024, 11(4): 569-574.
Shinichiro Yamamoto, Daisuke Obinata, Kenichi Takayama, Daigo Funakoshi, Kyoko Fujiwara, Makoto Hara, Satoru Takahashi, Satoshi Inoue. Anillin actin-binding protein expression correlates with poor prognosis for prostate cancer patients. Asian Journal of Urology, 2024, 11(4): 569-574.
链接本文:  
http://www.ajurology.com/CN/10.1016/j.ajur.2023.07.002  或          http://www.ajurology.com/CN/Y2024/V11/I4/569
  
  
Variable ANLN expression p-Value
Negative (n=69) Positive (n=17)
Age, year 67.9±6.2 67.8±3.77 0.96
PSA, ng/mL 27.3±37.8 28.8±23.8 0.89
Gleason score
5 or 6 32 4 0.32
7 18 5
8 9 6
9 7 1
10 3 1
pT stage 0.55
2 30 6
3 38 10
4 1 1
pN stage 0.56
N0 57 15
N1 12 2
OCT1 expression 0.30
Low 42 8
High 27 9
  
Variable Univariate Multivariate
HR 95% CI p-Valuea HR 95% CI p-Valuea
PSA (>20 ng/mL vs. ≤20 ng/mL) 1.13 0.13-9.49 0.896
Gleason score (high vs. low)b 24.65 4.68-453.23 <0.0001 7.37 1.15-144.18 0.033
pT stage (>2 vs. ≤2) 5.67 1.07-104.41 0.038 9.71 1.17-240.14 0.032
pN stage (1 vs. 0) 10.77 3.23-41.34 0.0002 12.73 2.34-112.37 0.002
ANLN (positive vs. negative) 3.79 1.09-12.64 0.036 12.11 2.15-98.43 0.004
  
  
[1] Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10:33-9.
doi: 10.1038/nm972 pmid: 14702632
[2] Takayama K, Inoue S. Transcriptional network of androgen receptor in prostate cancer progression. Int J Urol 2013; 20:756-68.
[3] Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 2008; 26:1148-59.
[4] Obinata D, Takayama K, Urano T, Murata T, Kumagai J, Fujimura T, et al. Oct1 regulates cell growth of LNCaP cells and is a prognostic factor for prostate cancer. Int J Cancer 2012; 130:1021-8.
doi: 10.1002/ijc.26043 pmid: 21387309
[5] Takayama KI, Suzuki Y, Yamamoto S, Obinata D, Takahashi S, Inoue S. Integrative genomic analysis of OCT1 reveals coordinated regulation of androgen receptor in advanced prostate cancer. Endocrinology 2019; 160:463-72.
[6] Obinata D, Takada S, Takayama K, Urano T, Ito A, Ashikari D, et al. Abhydrolase domain containing 2, an androgen target gene, promotes prostate cancer cell proliferation and migration. Eur J Cancer 2016; 57:39-49.
doi: 10.1016/j.ejca.2016.01.002 pmid: 26854828
[7] Yamamoto S, Takayama KI, Obinata D, Fujiwara K, Ashikari D, Takahashi S, et al. Identification of new octamer transcription factor 1-target genes upregulated in castration-resistant prostate cancer. Cancer Sci 2019; 110:3476-85.
[8] Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007; 39:175-91.
doi: 10.3758/bf03193146 pmid: 17695343
[9] Obinata D, Takayama K, Takahashi S, Inoue S. Crosstalk of the androgen receptor with transcriptional collaborators: potential therapeutic targets for castration-resistant prostate cancer. Cancers 2017; 9:22. https://doi.org/10.3390/cancers9030022.
[10] Sharma NL, Massie CE, Ramos-Montoya A, Zecchini V, Scott HE, Lamb AD, et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 2013; 23:35-47.
doi: 10.1016/j.ccr.2012.11.010 pmid: 23260764
[11] Obinata D, Funakoshi D, Takayama K, Hara M, Niranjan B, Teng L, et al. OCT1-target neural gene PFN2 promotes tumor growth in androgen receptor-negative prostate cancer. Sci Rep 2022; 12:6094. https://doi.org/10.1038/s41598-022-10099-x.
doi: 10.1038/s41598-022-10099-x pmid: 35413990
[12] Migita T, Takayama KI, Urano T, Obinata D, Ikeda K, Soga T, et al. ACSL3 promotes intratumoral steroidogenesis in prostate cancer cells. Cancer Sci 2017; 108:2011-21.
[13] Obinata D, Takayama K, Fujiwara K, Suzuki T, Tsutsumi S, Fukuda N, et al. Targeting Oct1 genomic function inhibits androgen receptor signaling and castration-resistant prostate cancer growth. Oncogene 2016; 35:6350-8.
doi: 10.1038/onc.2016.171 pmid: 27270436
[14] Bakht MK, Yamada Y, Ku SY, Venkadakrishnan VB, Korsen JA, Kalidindi TM, et al. Landscape of prostate-specific membrane antigen heterogeneity and regulation in AR-positive and ARnegativemetastaticprostatecancer. NatCancer 2023; 4:699-715.
No related articles found!
[1] Brian W. Chao, Daniel D. Eun. Robotic reconstructive surgery: The time has arrived[J]. Asian Journal of Urology, 2024, 11(3): 339 -340 .
[2] Tenny R. Zhang, Ashley Alford, Lee C. Zhao. Summarizing the evidence for robotic-assisted bladder neck reconstruction: Systematic review of patency and incontinence outcomes[J]. Asian Journal of Urology, 2024, 11(3): 341 -347 .
[3] Jonathan Rosenfeld, Devin Boehm, Aidan Raikar, Devyn Coskey, Matthew Lee, Emily Ji, Ziho Lee. A review of complications after ureteral reconstruction[J]. Asian Journal of Urology, 2024, 11(3): 348 -356 .
[4] Luis G. Medina, Randall A. Lee, Valeria Celis, Veronica Rodriguez, Jaime Poncel, Aref S. Sayegh, Rene Sotelo. Robotic management of urinary fistula[J]. Asian Journal of Urology, 2024, 11(3): 357 -365 .
[5] Shuaishuai Chai, Hao Zhang, Gong Cheng, Jiawei Chen, Xincheng Gao, Yuancheng Zhou, Xingyuan Xiao, Bing Li. Minimally invasive reconstruction of extensive mid-lower ureteral strictures using a bilateral Boari flap[J]. Asian Journal of Urology, 2024, 11(3): 377 -383 .
[6] David Strauss, Eric Cho, Matthew Loecher, Matthew Lee, Daniel Eun. Description of a novel robotic early post-prostatectomy anastomotic repair technique and institutional outcomes[J]. Asian Journal of Urology, 2024, 11(3): 366 -372 .
[7] Matthew Lee, Elizabeth Nagoda, David Strauss, Matthew Loecher, Michael Stifelman, Lee Zhao. Role of buccal mucosa graft ureteroplasty in the surgical management of pyeloplasty failure[J]. Asian Journal of Urology, 2024, 11(3): 373 -376 .
[8] Yiren Yang, Xinxin Gan, Wei Zhang, Baohua Zhu, Zhao Huangfu, Xiaolei Shi, Linhui Wang. Research progress of the Hippo signaling pathway in renal cell carcinoma[J]. Asian Journal of Urology, 2024, 11(4): 511 -520 .
[9] Sidhartha Kalra, Atanu Kumar Pal, Lalgudi Narayanan Dorairajan. Understanding female urinary continence—lessons from complications of female urethral surgery[J]. Asian Journal of Urology, 2024, 11(3): 504 -506 .
[10] Claudia-Gabriela Moldovanu. Virtual and augmented reality systems and three-dimensional printing of the renal model—novel trends to guide preoperative planning for renal cancer[J]. Asian Journal of Urology, 2024, 11(4): 521 -529 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed