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Abstract Chromophobe renal cell carcinoma (ChRCC) is the third most common renal cell
carcinoma (RCC) subtype, which predominantly occurs in sporadic setting. ChRCCs are consid-
ered to originate from the intercalated cell of distal tubules with two main morphological var-
iants, classic and eosinophilic. Most ChRCCs carry a favorable clinical outcome. Histology alone
is limited in predicting the behavior of ChRCCs that do not have overtly aggressive morphologic
findings such as necrosis and sarcomatoid features. Along with positive CD117 expression,
classic ChRCCs generally express diffuse and uniform CK7, while eosinophilic variant demon-
strates more heterogeneous CK7 expression (rare or patchy). Multiple losses of chromosomes
1, 2, 6, 10, 13, 17, and 21 are considered to be the genetic hallmarks of classic and eosinophilic
ChRCCs, while chromosomal gains are known to be associated with sarcomatoid ChRCCs. TP53
and PTEN are the two most frequently mutated genes in ChRCCs. The major challenge in the
differential diagnosis of ChRCCs includes considerations around the eosinophilic variant (of
ChRCCs), where it may share overlapping features with oncocytoma or other recent emergent
oncocytic tumors. Most eosinophilic ChRCCs share expression of the recently described bio-
markers, LINC01187 and FOXI1, with classic ChRCCs, however, a subset of eosinophilic-like
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ChRCCs with lower biomarker expression have been demonstrated to harbor MTOR gene muta-
tions. Overall, the morphologic features of ChRCCs and genetic profile with combinations of
chromosomal losses and gains suggest this tumor entity to represent a distinct, yet heteroge-
neous group of renal neoplasms.
ª 2022 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

Chromophobe renal cell carcinoma (ChRCC) is the third most
common renal cell carcinoma (RCC) subtype, accounting for
5%e7% of all RCCs. Although ChRCC was first reported and
published in 1985 by Thoenes et al. [1], it appears that it was,
in fact, first illustrated and described by Dr. Pierre Masson
from Montreal, Quebec in 1955 [2]. In contrast to clear cell
RCCs (CCRCCs) and papillary RCCs (PRCCs), ChRCCs originate
from the intercalated cell of distal tubules [3]. Two main
morphological variants of ChRCCs, the classic and eosino-
philic, have been described; ChRCCs may also be associated
with sarcomatoid dedifferentiation, a kind of an
epithelialemesenchymal transition [4].

Over the last few decades, a large body of literature on
ChRCCs, their morphologic variants, clinical behavior, mo-
lecular, and histogenetic studies has been published. In this
perspective, we present most updated and pertinent in-
formation on clinicopathologic and translational aspects of
ChRCCs, and their applicability and potential relevance in
clinical practice.
Figure 1 Classic and sarcomatoid ChRCCs. (A) Classic ChRCC
H & E stain; (B) Sarcomatoid ChRCC H & E stain; (C) Membra-
nous staining for CD117; (D) High-level nuclear LINC01187
expression. All images are at 200�. ChRCC, chromophobe renal
cell carcinoma; H & E, hematoxylin and eosin.
2. Clinical spectrum of ChRCCs

Most ChRCCs occur sporadically, and predominantly earlier
than CCRCCs at an average age of 59 years (range 17e88
years), with a slight male predominance [5e7]. Three rare
hereditary diseases that may predispose to the develop-
ment of ChRCCs are the Birt-Hogg-Dubé syndrome (BHD)
with germline mutation of the folliculin gene (FLCN),
mapped at 17p11.2 [8e11], the tuberous sclerosis complex
(TSC) with mutations involving either TSC1 (9q34) or TSC2
(16p13) genes [8,12,13], and the Cowden syndrome asso-
ciated with germline mutation of PTEN (10q23) gene [14].
In such rare cancer susceptibility syndromes, genetic
testing may be offered to patients and their families,
when clinical and/or pathologic features are concerning
(for example, multiple oncocytic renal tumors).

ChRCCs generally carry a favorable clinical outcome with
a low tendency to progress or metastasize. Their prognosis is
postulated to be better than CCRCCs, with a higher 5- to
10-year cancer-specific survival of 93% and 87%, respectively
[7,15,16]. Subsequent disease specific events including
recurrence/metastasis/death have been reported in
approximately 1.5% and 6.6% of cases, at 5 years and 10
years respectively [7,16,17]. Patients with metastatic
ChRCCs have a similar median overall survival compared to
patients with CCRCCs, when treated with conventional tar-
geted therapies [17]. Unlike non-sarcomatoid ChRCCs,
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sarcomatoid ChRCCs are associated with poor prognosis and
worse clinical outcome [18]. Although given their rarity, the
prognosis of rare subtypes of ChRCCs is currently unclear, we
speculate their clinical behavior to be comparable to those
of non-sarcomatoid ChRCCs.

3. Morphological correlates of ChRCCs

ChRCCs are characterized by neoplastic cells with promi-
nent cell membranes and pale to eosinophilic cytoplasm,
arranged in a solid-alveolar pattern. Characteristic features
that facilitate the recognition of most ChRCCs include
hyperchromatic and irregular wrinkled (raisinoid) nuclei,
perinuclear clearing (halos), and binucleation (Fig. 1A). Of
note, electron microscopic analyses have revealed peri-
nuclear halos and raisinoid nuclei to reflect cytoplasmic
microvesicles and peripheral condensation of mitochon-
dria, which may not be seen on cytologic imprints [19,20].

Two distinct morphological variants of ChRCCs are
classic and eosinophilic. Classic ChRCCs exhibit mostly pale
cells with raisinoid nuclei in an alveolar, solid to trabecular
architectural growth pattern. Eosinophilic variant of
ChRCCs was described in 1988 [21], following the initial
description of classic ChRCCs. The most recent 2016 World
Health Organization (WHO) renal tumor classification
formally recognizes the eosinophilic variant of ChRCCs and
acknowledges the challenges associated with making a
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morphologic distinction from benign oncocytoma but does
not provide precise diagnostic criteria [4]. The 2016 WHO
classification only stipulates that eosinophilic ChRCCs
should be “almost purely eosinophilic”. Eosinophilic
ChRCCs typically demonstrate acinar architecture, abun-
dant eosinophilic cytoplasm (almost purely eosinophilic),
focal nuclear wrinkling, and subtle perinuclear clearing/
halos (Fig. 2A). It is important to recognize that eosinophilic
ChRCCs can present diagnostic challenges in daily routine
urology and pathology workup, and that not all tumors
mimicking eosinophilic ChRCCs belong to the ChRCC family.

Similar to other RCCs, ChRCCs may show sarco
matoid features (Fig. 1B) where the incidence of this
epithelialemesenchymal transition in primary ChRCCs has
been estimated at 2%e8% [7,16,18,22e24], which reaches a
substantial 26% in metastatic disease [18]. Furthermore, in
recent years, multiple studies have shown ChRCCs to
display morphologic heterogeneity including those with
pigmented/adenomatoid, multi-cystic, neuroendocrine,
and papillary features [25e31].

4. Immunohistochemical overview and novel
biomarkers

ChRCCs, similar to oncocytomas, originate from the inter-
calated cells and hence exhibit positive CD117 immuno-
histochemical expression, known to be constitutionally
Figure 2 Eosinophilic variant of ChRCC. (A) Eosinophilic
variant of ChRCC H&E stain; (B) Predominantly membranous
staining for CD117; (C) The nuclear staining for FOXI1 in
eosinophilic variant of ChRCC; (D) High-level nuclear
LINC01187 expression; (E) Another example of eosinophilic
variant of ChRCC H & E stain; (F) With negative CD117
expression and MTOR gene mutation (data not shown). All
images are at 200�. ChRCC, chromophobe renal cell carci-
noma; H & E, hematoxylin and eosin.
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expressed within some cells in the distal nephron. Along
with positive CD117 expression (Figs. 1C and 2B), classic
ChRCCs generally express diffuse and uniform CK7, which
may be of diagnostic utility for a practicing pathologist. In
most cases, classic ChRCCs can be readily diagnosed on
basis of a thorough histologic evaluation. However, in some
instances such as limited samples (i.e., core biopsy), this
may be challenging; confounding factors include other
differential diagnoses and potential mimickers such as
CCRCCs and miscellaneous tumors (such as adrenal neo-
plasms). Key histologic features such as nuclear atypia and
prominent cell membranes along with pertinent immuno-
histochemical stains (i.e., positive expression for PAX8,
CD117, and CK7) can assist in such settings. Other helpful
markers, whose negative expression may support a ChRCC
diagnosis where CCRCC is in the differential diagnosis,
include vimentin and carbonic anhydrase-IX (CA-IX).

Distinguishing ChRCCs from other oncocytic neoplasms
can be difficult, especially the eosinophilic variant, which
can mimic other neoplasms. Eosinophilic variants of
ChRCCs demonstrate rare or patchy CK7 expression,
similar to oncocytoma [32,33]. A morphologic assessment
is often most helpful in distinguishing oncocytoma from
classic and eosinophilic variants of ChRCCs, with immu-
nohistochemical markers needed in occasional cases to
support morphologic impression. Of note, Hale colloidal
iron stain has historically been used in this differential
diagnosis, with ChRCCs showing cytoplasmic positivity
while oncocytoma is generally negative. The utility of this
stain is limited due to potential technical process and
interpretation challenges [34].

In terms of cell of origin, data from The Cancer Genome
Atlas (TCGA) and others have demonstrated ChRCCs to
exhibit a distal nephron-based mRNA expression signature
(based on in silico data and immunohistochemistry);
CCRCCs, on the other hand, displayed a proximal nephron
based signature [35e37]. TCGA also showed ChRCCs to ex-
press genes driven by the transcription factor FOXI1, which
labels intercalated cells, a finding further validated by
follow-up studies (Fig. 2C) [38]. Based on recently pub-
lished data, ChRCCs are enriched for expression of inter-
calated cells markers such as FOXI1 protein and long
noncoding RNA LINC01187 (Fig. 2D) in both primary and
metastatic sites, where these may serve as useful bio-
markers especially in the metastatic setting (Fig. 1D)
[37,39]. Sarcomatoid ChRCCs interestingly tend to lose
expression of these novel markers in the high-grade spindle
cell areas of such tumors, which otherwise tend to lose CK7
and in contrast acquire vimentin expression. Currently,
there are no clinically available cancer- or lineage-specific
biomarkers for oncocytoma, ChRCCs including the eosino-
philic variant, or other related oncocytic tumors. The
ongoing in-depth proteogenomic assessment of renal tu-
mors by Clinical Proteomic Tumor Analysis Consortium
(CPTAC) is likely to have a major impact on RCC protein
biomarker identification [40].

5. Grading considerations

Most ChRCCs do not exhibit aggressive behavior, with only a
small subset (approximately 5%) at risk of progression and



Figure 3 Distribution of chromosomal losses and gains in
classic, eosinophilic and sarcomatoid ChRCC. ChRCC, chromo-
phobe renal cell carcinoma.
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metastasis after surgery. Accurate prediction of the clinical
behavior and trajectory of ChRCCs by histologic features
has proven to be challenging. Historically, risk assessment
of ChRCCs has not been successful with a number of studies
attempting to address the value of histological grading for
these tumors [6,16,41e43]. The clinical significance of
traditional grading systems applied to other RCC subtypes,
such as Fuhrman nuclear grade and the WHO/International
Society of Urological Pathology (ISUP) nucleolar system,
could not be demonstrated for ChRCCs [44]. In contrast to
CCRCCs and PRCCs, the WHO/ISUP grading system is not
applicable to ChRCCs [44,45].

Evaluation of a large ChRCC cohort previously demon-
strated pT stage, tumor necrosis, and sarcomatoid change
to be independently predictive of aggressive behavior on
multivariable analysis [23]. The largest single-institution
morphology based study showed significant association of
clinical outcome with tumor size, small-vessel invasion,
sarcomatoid features, and microscopic necrosis [7]. Since
the prominent nuclear atypia and relative infrequency of
conspicuous nucleoli inherent to ChRCCs pose challenges to
applying conventional nuclear grading, a three-tiered
grading system [46] has been proposed, correlating
geographic nuclear crowding and anaplasia in predicting
clinical outcome for patients with ChRCCs. A subsequent
study, however, found that this grading system did not
provide additional prognostic information once tumor stage
and sarcomatoid features were included [43]. Similarly,
Ohashi et al. [6] were not able to validate the proposed
three-tiered chromophobe grading system or the four-
tiered WHO/ISUP grading system for outcome determina-
tion in ChRCC. They instead proposed a two-tiered grading
system, based on sarcomatoid features and necrosis, which
was successful at the multivariate level. In another large
study, a modified tumor grading scheme using mitotic
index, cytologic eosinophilia, and architecture was not
significantly associated with outcome [7].

Overall, histology alone seems to be limited in predicting
the behavior of ChRCCs that do not have overtly aggressive
morphologic findings (e.g., necrosis and sarcomatoid fea-
tures). Accordingly, supplementation with data from
ancillary studies assessing other biomarkers, as they are
discovered, may be necessary to accurately predict
behavior in the majority of ChRCCs that do not otherwise
have overtly adverse histologic findings.

Hopefully, discovery of novel molecular aberrations and
genomic pathway derangements associated with aggressive
ChRCCs can act as a surrogate to morphology for determi-
nation of clinical outcome of this disease.

6. Molecular underpinnings of ChRCCs

Recent comprehensive molecular characterizations, with
identification of genetic aberrations and chromosomal ab-
normalities, have considerably improved our understanding
of ChRCC, however, to date, predictive biomarkers remain
to be identified [5,17].

Multiple losses of chromosomes 1, 2, 6, 10, 13, 17, and 21
have historically been considered the genetic hallmark of
ChRCC (both classic and eosinophilic variants). Earlier stra-
tegiesusing classic cytogenetic techniquesestablishedclassic
4

ChRCC to be associated with multiple losses of chromosomes
1, 2, 3, 6, 7, 9, 10, 12, 13, 17, 18, and 21 [47e53]. The TCGA
analysis of ChRCC further confirmed the characteristic
pattern of chromosomal losses of 1, 2, 6, 10, 13, and 17 in 86%
of tumors (mainly classic type), with documented additional
losses of chromosomes 3, 5, 8, 9, 11 and 18, and 21q in
12%e58% of tumors [54]. In the last two decades, multiple
studies have also demonstrated multiple chromosomal gains
in ChRCCs [25,53,55e61]. Although this has generally been
deemed an uncommon phenomenon in ChRCCs, studies with
larger cohorts showed a more variable genetic profile of
ChRCCs with multiple chromosomal losses as well as multiple
gains [25,53,55e61]. Most frequently detected chromosomal
gains are 4, 7, 15, 19, and 20 (mainly in classic and sarcoma-
toid types) [25,53,55e61]. It is noteworthy that, unlike classic
ChRCCs, diploid chromosomal pattern is more commonly
found in the eosinophilic variant [62].

It should be noted that although both oncocytomas and
ChRCCs arise from the distal nephron, they do not represent a
continuum of progression from benign to malignant disease.
Even eosinophilic ChRCCs, which share some morphologic
features with oncocytoma, have different chromosomal nu-
merical aberrations (CNAs) and gene expression landscape
than oncocytomas [36]. On the other hand, sarcomatoid
ChRCCs carry multiple chromosomal gains including 1, 2, 6, 10
and 17, which are often different than CNAs seen in the
epithelial component; these tumors appear to have lower
frequency of chromosomal losses [53,55e58,63]. Studies of
other rare variants, such as ChRCCs with pigmented micro-
cystic adenomatoid/multi-cystic growth [26e28,64], ChRCCs
with neuroendocrine features [25,29,30,65,66], and ChRCCs
with papillary architecture [31], also show variable CNAs
including multiple losses (more common) and gains (less
common). A survey of CNAs in metastatic ChRCC suggests
distant metastases to demonstrate the same genetic pat-
terns, usually chromosomal losses, as found in the primary
tumors [55]. Of note, no correlation between CNAs and the
proposed three-tiered grading system for ChRCCs has so
far been established [46,58]. Distribution of chromosomal
losses and gains in classic, eosinophilic, and sarcomatoid
ChRCCs are presented in Fig. 3 [53].

A diverse molecular phenotype of ChRCCs has been
highlighted by recent genetic studies encompassing eosin-
ophilic variant, sarcomatoid, and metastatic ChRCCs. These
studies provide valuable insight into characterization and
sub-classification of ChRCCs, or evolutionary patterns
associated with these malignancies. Classic ChRCCs display
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fewer hypermethylation events and harbor a lower number
of somatic variants (low mutational burden) compared to
both CCRCCs and PRCCs [36,67,68]. TP53 and PTEN are the
two genes most frequently found to be mutated in
respectively 32%e64% and 9%e45% of classic ChRCCs, in-
dependent of the presence of sarcomatoid features
[18,36,68]. TERT promoter mutations/rearrangements have
also been detected in 6%e12% of cases and associated with
TERT upregulation, without any distinct impact on clinical
outcome [36,69]. The TCGA analyses of ChRCCs labeled
TP53 and PTEN as the most frequently mutated genes in
ChRCCs [54,70]. Loss of CDKN2A gene or its expression, by
either deletion of 9p21.3 or hypermethylation, was the
second most common alteration [54,70]. Ricketts et al. [68]
examined metabolic analysis of RCC histologic subtypes and
found that metabolically divergent ChRCCs to be associated
with high stage and lack the chromosomal copy number
losses typically associated with ChRCCs; hence were asso-
ciated with much poorer survival.

Mutations identified in other genes have been identified in
less than 5% of ChRCCs (mostly eosinophilic) includingMTOR,
TSC1, TSC2, NRAS, and others [67]. In contrast to CCRCCs and
PRCCs, no significant mutations have been identified in the
three chromatin remodeling genes PBRM1, BAP1 and SETD2
[68]. Mutations in mitochondrial DNA within ChRCCs have
enabledestablishmentofa link withalterationsof respiration
and oxidative phosphorylation pathways [36]. Additionally,
pathway analysis demonstrated rare alterations in PI3K-AKT-
mTORpathway genes, including PTEN, TSC1, TSC2 andMTOR,
in ChRCC, which would potentially result in appropriate tar-
gets for mTOR inhibitors [54,70,71]. Durinck et al. [67] iden-
tified TP53, PTEN, FAAH2, PDHB, PDXDC1 and ZNF765 to be
significantly mutated in ChRCC, with frequent TP53 muta-
tions being exclusively associated with classic ChRCCs. Most
recently, Roldan-Romero et al. [72] found within the eosino-
philic variant of ChRCCs an overrepresentation of mTOR
pathway (MTOR, TSC1, and TSC2) mutations as well as aber-
rations in the mitochondrial genes encoding the complex I of
the electron respiratory chain.

Interestingly, recent studies have allowed a greater
insight into the genomic features of metastatic ChRCCs
supporting TP53 mutations, PTEN mutations, CDKN2A
Table 1 Molecular aberrations and mutation summary for ChRC

Genetic alteration ChRCC CC

Main chromosomal
numerical
variation

- Multiple chromosomal los-
ses [1,2,6,10,13,17,21]
and gains [1,2,6,10,17]
more frequent in
sarcomatoid ChRCC

- L
(
9
d

Main genetic
aberration

- TP53 (32%e64%), PTEN (9%
e45%), and TERT pro-
moter mutations/rear-
rangements (6%e12%)

- V
e

S

Methylation status - Hypomethylated, less
frequently hyper-
methylated (mostly in
advanced stage)

- H

ChRCC, chromophobe renal cell carcinoma; CCRCC, clear cell renal c
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alterations and imbalanced chromosome duplication
(defined as duplication of �three chromosomes) as high-risk
features associated with poor survival [68,73]. DNA hyper-
methylation has also been associated with high-stage dis-
ease, TP53 mutation and poor survival in ChRCCs [68].
Identification of such molecular genotypes provides hope for
an integration of such tools into existing models of clinical
care.

Overall, ChRCCs show variable morphology and genetic
profile with combinations of chromosomal losses and gains,
suggesting that they represent a heterogeneous group of
neoplasms, both from a morphologic and a molecular
perspective (Table 1).
7. ChRCCs and contemporary/emerging renal
oncocytic neoplasms

The major challenge in the differential diagnosis of ChRCCs
would be associated with its eosinophilic variant, especially
in distinction from oncocytomas, and particularly in limited
samples (i.e., core biopsy), where such a distinction may
carry clinical implications. Oncocytomas typically show a
relatively nested growth pattern where the neoplastic cells
have uniform round nuclei, lack perinuclear halos, and a
shared immunohistochemical phenotype with eosinophilic
ChRCCs (CD117þ, CK7e or only scattered positive cells). Liu
et al. [62] recently examined a scoring system where histo-
logical patterns (organoid/nested, tubulocystic and solid/
confluent), the quality of stroma (fibromyxoid and edema-
tous), nuclear wrinkling, perinuclear halos, well-defined cell
borders with clear cytoplasm, and CK7 immunohistochemical
expression, were features found to be significantly discrimi-
natory between oncocytoma and eosinophilic ChRCCs.

Other “eosinophilic” renal neoplasms that need to be
considered in the differential diagnosis include WHO
recognized renal entities such as succinate dehydrogenase
(SDH)-deficient RCC, as well as provisional/emerging ones
including eosinophilic solid and cystic RCC (ESC-RCC),
low-grade oncocytic renal tumor (LOT), anaplastic lym-
phoma kinase rearrangement-associated RCC (ALK-RCC),
and eosinophilic vacuolated tumor (EVT) (Table 2).
C including a comparison with CCRCC and PRCC.

RCC PRCC

oss of 3p (91%), gains of 5q
67%), loss of 14q (45%), del
p21 (CDKN2A locus), and
el 10q23 (PTEN locus)

- Trisomy 7 (50%e100%),
Trisomy 17 (66%e100%),
and loss of Y (77%e100%)

HL (75%), PBRM1 (33%
40%), BAP1 (10%), and
ETD2

- MET (17%e21% in type 1),
and some with mutations
in BAP1, SETD2, ARID2,
KEAP1, TERT promoter,
CDKN2A/B, and NF2

ypermethylated (subset) - Hypermethylated (subset)

ell carcinoma; PRCC, papillary renal cell carcinoma.



Table 2 Clinical, histologic, immunophenotypic, and molecular summary of ChRCC, eosinophilic variant, and overlapping
entities.

Renal tumor subtype Clinical feature Morphologic feature Ancillary feature Molecular aberration

ChRCC - Majority indolent,
3%e10% metastasis;
mostly sporadic;
rare hereditary
setting (TSC, BHD,
and Cowden)

- Large pale cells with promi-
nent cell membranes, þ/�
admixed with granular eosin-
ophilic cytoplasm and wrin-
kled nuclei with perinuclear
haloes, solid/large alveolar
architecture with incomplete
vascular septa

- CD117þ; usually
diffuse CK7þ
(sometimes focal or
negative); positive
expression of
LINC01187 and
FOXI1; vimentine

- Multiple chromoso-
mal losses and
gains; TP53 and
PTEN gene muta-
tions; other less
common mutations

Eosinophilic variant
of ChRCC

- Similar to ChRCC - Granular eosinophilic
cytoplasm, perinuclear
haloes, and nested
architecture

- CD117þ; more focal
CK7þ; expression of
LINC01187 and
FOXI1; vimentine;
SDHB retained

- Diploid or multiple
chromosomal losses

Oncocytoma - Benign and mostly
sporadic

- Granular eosinophilic
cytoplasm, central “archipel-
agos”, uniform round nuclei
with minimal atypia and no
mitotic activity

- CD117þ; focal to
negative CK7; posi-
tive for LINC01187
and FOXI1

- Diploid or hypodip-
loid (�1, X, Y, 14,
21); 11q13 (CCND1
locus) rearrange-
ment; mutation in
mitochondrial gene

Hybrid oncocytic
tumor

- Exceptional meta-
stases; usually asso-
ciated with BHD

- Features of oncocytoma and
ChRCC in the same tumor

- Variable; generally
CD117þ; CK7 focal
to patchy

- Germline mutations
in FLCN encoding
folliculin

Low-grade oncocytic
RCC, unclassified
or oncocytic renal
neoplasm of low
malignant
potential

- Presumably
indolent

- Resembles oncocytoma with
greater nuclear atypia and
absence of diagnostic fea-
tures of another oncocytic
neoplasm

- Generally CD117þ;
CK7 variable

- Unknown

ESC-RCCa - Established,
metastatic poten-
tial; sporadic or
germline

- Solid and cystic architecture,
abundant cytoplasm with
coarse basophilic granules

- Usually CK20þ;
CK7e or focal;
CD117e; vimentinþ

- TSC1/TSC2 somatic
or germline
mutations

LOTa - Indolentb and
mostly sporadic

- Solid architecture with
edematous areas, mono-
morphic round to oval nuclei
with delicate perinuclear
haloes

- CK7þ diffusely;
CD117e; vimentine;
SDHB retained

- Disomic or del
19p13, 19q13, 1p36;
MTOR gene muta-
tions in borderline
tumor or closely
similar tumor

EVTa - Indolentb; sporadic
or germline

- Solid/nested growth, onco-
cytic cytoplasm with large
vacuoles, and prominent
nucleoli

- CD117þ; CK7e or
focalþ; vimentine;
cathepsin-Kþ;
CK20e; SDHB
retained

- TSC2/MTOR gene
mutations; loss of
chromosomes 1 and
19, LOH of 16p11.2
e11.1; 7q31.31

SDH-deficient RCC - Established
metastatic poten-
tial; germline

- Eosinophilic cytoplasm with
vacuoles containing eosino-
philic to pale flocculent
material

- Loss of SDHB;
CD117e; CK7e

- Germline mutations
in one of the SDH
genes

ALK-RCC - Established
metastatic
potential

- Eosinophilic cytoplasm, vari-
able and admixed architec-
ture, mucinous/myxoid
background

- ALKþ; SDHB and FH
retained

- Rearrangement of
ALK with various
partners

ALK, anaplastic lymphoma kinase; ALK-RCC, anaplastic lymphoma kinase rearrangement-associated renal cell carcinoma; BHD, Birt-
Hogg-Dubé syndrome; ChRCC, chromophobe renal cell carcinoma; ESC-RCC, eosinophilic solid and cystic renal cell carcinoma; EVT,
eosinophilic vacuolated tumor; FH, fumarate hydratase; LOH, loss of heterozygosity; LOT, low-grade oncocytic renal tumor; MTOR,
mammalian target of rapamycin; SDH, succinate dehydrogenase; SDHB, succinate dehydrogenase complex subunit B; SDH-deficient RCC,
succinate dehydrogenase deficient renal cell carcinoma; TSC, tuberous sclerosis complex.

a Emerging entity under investigation.
b Limited follow-up data available.
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7.1. SDH-deficient RCCs

These are rare renal neoplasms which occur in setting of
germline mutation of one of the subunits of SDH gene
(mostly SDHB and SDHA). Histologically, they exhibit solid,
nested or tubular growth pattern, mimicking neuroendo-
crine tumors. Characteristic findings of this entity include
neoplastic cells with flocculent cytoplasmic vacuoles with a
pale eosinophilic or bubbly appearance and low-grade
nuclei [74]. In contrast to ChRCCs, CD117 and CK7 are
usually negative [75]. Loss of SDHB immunohistochemical
staining is diagnostic [74] and should lead to genetic
consultation, if germline setting is not previously estab-
lished or known.

7.2. ESC-RCCs

Most ESC-RCCs are small, solitary with low stage that are
predominantly found in females, and generally exhibit
indolent behavior [76]. Approximately 10% of these neo-
plasms occur in TSC patients. ESC-RCCs show solid and
cystic growth pattern, with often scattered histiocytes and
lymphocytes. The neoplastic cells are voluminous and
eosinophilic with cytoplasmic coarse granularity (stippling)
[76]. Unlike conventional renal tumors, most ESC-RCCs
(about 85%) are positive for CK20 (at least focal), while
negative for CD117 and may rarely/focally express CK7
[76].

7.3. LOTs

LOTs are typically single, small, low-stage tumors
demonstrating an overlapping morphology with oncocy-
toma and eosinophilic ChRCCs [77,78]. LOTs show solid
growth pattern with sharply delineated edematous areas
containing single cells and irregular cell cords. The
eosinophilic cells show “low-grade”, round to oval nuclei,
often with delicate perinuclear clearing. Immunohis-
tochemically, these tumors consistently show CD117e/
CK7 diffuseþ profile [78]. Importantly, these tumors tend
to share morphologic, immunophenotypic and molecular
overlap with the eosinophilic-like variant of ChRCCs
harboring MTOR mutations [37,79]. Rare cases have been
recently described in TSC setting [80,81].

7.4. ALK-RCCs

ALK-RCCs are solitary tumors with slight male predilection,
and a significant potential for metastasis (up to 30%)
[82,83]. By definition, ALK-RCCs are associated with an ALK
rearrangement at the genomic level. ALK-RCCs may show
variable and admixed growth patterns (e.g., solid, tubular
or tubulo-cystic, papillary, cribriform, trabecular, and
signet-ring individual cell growth), often in a mucinous
background [77]. The neoplastic cells have eosinophilic
cytoplasm and may show variable morphologies, including
rhabdoid, vacuolated, pleomorphic, and giant cell [77].
Diffuse cytoplasmic and membranous ALK protein expres-
sion by immunohistochemistry is diagnostic and can aid in
screening suspicious cases, particularly in tumors difficult
7

to classify (where immunohistochemistry for conventional
markers is nonspecific or negative).

7.5. EVTs

EVTs present a unique morphology, relatively consistent
immunophenotypic profile and distinct molecular/genetic
features [75,77,84,85]. These tumors demonstrate a solid
to nested growth pattern. The neoplastic cells exhibit
eosinophilic cytoplasm, with large intracytoplasmic vacu-
oles, prominent cell membranes, and round to oval nuclei,
with enlarged nucleoli. Normal renal tubules and thick-
walled vessels are frequently found at the periphery.
The neoplastic cells are typically immunoreactive for
cathepsin-K, CD117, and CD10. CK7 is variably positive, and
negative stains include vimentin, CK20, HMB45, and Melan-
A. EVTs have been shown to harbor TSC2 or MTOR somatic
mutations [85,86].

7.6. Other “difficult to classify” oncocytic tumors

It is worth noting that the surgical pathology community, at
large, still considers oncocytic neoplasms and their clini-
copathologic spectrum as one of the most challenging areas
in routine clinical practice. The diagnosis of tumors with
overlapping morphologic features spanning a spectrum of
entities like oncocytoma, ChRCC, and others, mentioned
above, not surprisingly, presents a frequent clinical man-
agement dilemma. The Genitourinary Pathology Society
(GUPS) has recently proposed the term “oncocytic renal
neoplasm of low malignant potential, not further classified”
for such “borderline” cases, which should be reserved for
solitary, sporadic tumors with overlapping features [75]. We
believe this entity encompasses the currently so called
“low-grade oncocytic renal cell carcinoma, type unclassi-
fied” tumor subtype. This approach recognizes the fact that
this “clinical management” category likely includes a het-
erogeneous group of renal neoplasms that most likely have
a significantly low risk for developing metastasis. Of
importance, the term “hybrid oncocytic tumor” should be
reserved for hereditary cases (i.e., BHD syndrome), as per
the GUPS recommendations [75].

8. A practical diagnostic approach to ChRCCs

Most ChRCCs can be accurately diagnosed on the basis of a
thorough histologic evaluation. However, the diagnosis of
ChRCCs at times remains a challenge, particularly in limited
samples, and when confounded by the presence of
morphologic features overlapping with oncocytoma. The
role of immunohistochemistry in ChRCCs (with its limita-
tions) is evolving and may aid in challenging cases. It should
be noted that a subset of TSC/MTOR-aberration associated
RCCs have been demonstrated to harbor features morpho-
logically similar to eosinophilic ChRCC, where, interest-
ingly, these tumors may be negative for CD117 expression
(Figs. 2E and 2F) [13,79]. Most eosinophilic ChRCCs share
expression of the recently described biomarkers, LINC01187
and FOXI1, with classic ChRCCs, however, a subset of
eosinophilic-like ChRCCs with lower biomarker expression
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were demonstrated to harbor MTOR gene mutations
(Figs. 2E and 2F) [37].

Presence of a renal tumor in general warrants dedicated
cross sectional imaging for further characterization to
facilitate treatment planning. It should be noted that
oncocytoma cannot reliably be distinguished from RCC, but
techniques such as diffusion-weighted (DW) MRI show
promising results [87]. Renal mass biopsy demonstrates a
reliable ability to determine the presence of malignancy
and characterize histology in small renal masses [88]. The
current clinical guideline panels suggest offering renal mass
biopsy as an adjunctive option in the evaluation of patients
with localized RCCs [88]. Unfortunately, an accurate diag-
nosis of oncocytic renal tumors may be challenging upon
renal mass biopsy; a limited sampling of tumor at the time
of renal biopsy may or may not be representative of the
entire lesion [89]. This is most pronounced in distinguishing
eosinophilic ChRCCs from oncocytoma, given the fact that
this differential often carries significant clinical and man-
agement implications. As such, the field of urologic pa-
thology is still relatively unclear as to whether it is
preferable to issue an outright diagnosis of oncocytoma
(when features are typical in the biopsy sample) or to use
more general terminology, such as “low-grade oncocytic
neoplasm” with a comment that the features are compat-
ible with oncocytoma [90]. At times, this distinction is
impossible upon renal biopsy and a general terminology of
“low-grade oncocytic neoplasm” is advisable, with
comment that the differential diagnosis includes entities
like renal oncocytoma and eosinophilic ChRCCs.

In perplexing cases, genomic profiling may be helpful in
guiding towards the correct renal tumor categorization. In
a comprehensive genomic study of non-clear cell RCCs,
Durinck et al. [67] identified ADAP1, SDCBP2, HOOK2,
BAIAP3, and SPINT1 as the top five genes with high level of
expression in ChRCCs, while ITGB3, MINOS1-NBL1, and
ASB1 were found to be upregulated in oncocytomas.
Furthermore, a set of five genes including ASB1, GLYAT,
PDZK1IP1, PLCG2, and SDCBP2 was reported to be suffi-
cient to separate ChRCC, oncocytoma, and PRCC [67].
These findings shed light on developing of companion
diagnostic panels for renal neoplasms with oncocytic
features. It is worth noting that such findings would
require further validation studies before they are consid-
ered for application in clinical practice.

Concerning the utility of CNAs, it should be noted that
classic ChRCCs show frequent loss of chromosomes 1, 2, 6,
8, 10, 13, 17 and 21, while the eosinophilic variant of
ChRCCs appears to be almost completely diploid [53].
Oncocytomas, on the other hand, showed very few copy
number alterations, with chromosome 1 deletion being the
most frequent [53,67]. We believe that in distinguishing
ChRCC from its mimickers such as oncocytoma, careful
histologic examination along with immunohistochemistry
(as needed) may serve as a baseline approach.

Finally, other ancillary methods such as novel and
emerging markers (i.e., FOXI1 and LINC01187) and molec-
ular testing may be helpful, while a concise discussion of
pertinent clinicopathologic features with clinicians is
paramount in ambiguous and unresolved cases.
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9. Management implications for ChRCCs and
related oncocytic neoplasms

The clinical management of ChRCCs is relatively well
established, while in some areas it continues to evolve.
Similar to CCRCCs, the general approach for the treat-
ment of localized and resectable ChRCCs is surgery, with
no role for adjuvant therapy after definitive surgery for
clinical Stages IeIII [91]. For advanced or metastatic
ChRCCs, systemic therapies with vascular endothelial
growth factor (VEGF) inhibitors (i.e., sunitinib) or mTOR
inhibitors (i.e., everolimus) are currently preferred first-
line options [91]. Enrollment to clinical trials, immuno-
therapy, and cytoreductive nephrectomy could also be
considered, whenever feasible, as well as molecular
characterization of metastatic ChRCCs, to improve sys-
temic therapy strategy.

There are currently limited clinical data available on
the recently described and emerging oncocytic renal
neoplasms which fall within the differential diagnosis of
ChRCC, such as EVTs and LOTs, as well as borderline
oncocytic tumors. From a practical standpoint, we believe
that it would be appropriate, for the time being, to clin-
ically manage such tumors similar to those with low ma-
lignant potential for recurrence/metastasis, such as
eosinophilic ChRCCs.

10. Conclusion

ChRCCs represent a heterogeneous group of neoplasms
demonstrating unique morphologic and genetic profiles.
Most ChRCCs carry a favorable clinical outcome, with the
exception of those with sarcomatoid features. Conven-
tional WHO/ISUP grading system does not apply to ChRCCs
as histology alone is limited in predicting the behavior of
these tumors in the absence of known adverse factors such
as necrosis and sarcomatoid features. To distinguish
ChRCCs from its mimickers, careful histologic examination
along with a small set of immunohistochemical stains
including CD117/CK7/CA-IX is likely to serve as an opti-
mum baseline approach. In perplexing cases, genomic
profiling may be helpful.
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